Линейные и квадратичные зависимости, функция х и связанные с ними уравнения и неравенства
2) Рассмотрим случай , тогда неравенство (2) равносильно
В этом случае множество А:
idth=68> | |||||||||
| |||||||||
|
|
| |||||||
и включение неверно.
3) Рассмотрим , тогда неравенство (2) равносильно
Изобразим графически взаимное расположение множеств А и В, при которых верно включение .
|
|
| |||||
|
|
Рис. 5.
В случае рис. 3 выполняется система неравенств:
В случае рис. 4 выполняется система неравенств:
В случае рис. 5 выполняется условие D < 0 (8). Из пунктов I, II теоремы 7 следует, что условия (6), (7), (8) равносильны совокупности следующих систем:
Ответ. .
IV. Найти все значения параметра а, при которых уравнение
=0
имеет по крайней мере два корня, один из которых неотрицателен, а другой не превосходит -1.
Решение.
Найдем область возможных значений параметра, при которых имеет смысл левая часть уравнения.
Рассмотрим следующие два случая:
1)
В этом случае любое число является решением уравнения, значит условие задачи выполнено.
Ответ 1)
2) Рассмотрим случай .
В этом случае , и на этот множитель можно сократить, не теряя корней. Итак, при , наше уравнение равносильно следующей системе:
Заметим, что для lg a > lg 1 = 0.
Необходимо выяснить, при каких а из Е справедливы неравенства:
, где - вещественные корни квадратного трехчлена (*).
Иначе говоря, числа -1 и 0 должны находиться между корнями этого квадратного трехчлена.
Согласно пункту III теоремы 7, должна быть справедлива система:
Ответ 2). .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах