Нестандартный анализ
Порядок на R архимедов, а на *R неархимедов: это значит, что в R аксиома Архимеда выполняется, а в *R не выполняется. По этой причине стандартный (обычный) анализ, изучающий R, называется еще архимедовым, а нестандартный анализ, изучающий *R, называют неархимедовым.
Для построения нестандартного анализа необходимо расширить множество действительных чисел до более широкого множества гип
ердействительных чисел.
Но прежде поговорим о самих действительных числах и их происхождении.
До сих пор мы предполагали известным понятие действительного числа. Понятие действительного числа имеет долгую историю, начавшуюся еще в древней Греции (о чем напоминает название “аксиома Архимеда”) и закончившуюся лишь вXIX веке. Самой первоначальной и основной числовой системой является, конечно, система натуральных чисел. Натуральных чисел, однако, оказывается мало: пытаясь решить уравнение 3 + х = 2 в натуральных числах, мы обнаруживаем, что оно не имеет решений и наше желание определить операцию вычитания оказывается неудовлетворенным. Поэтому мы расширяем множество натуральных чисел до множества целых чисел. В этой процедуре для нас сейчас важно следующее: каким образом мы определим сложение и умножение на целых числах? То, что 2 + 2 == 4, можно увидеть, сложив две кучи по два яблока в одну. Но почему мы считаем, что (-2)+(-2)=(-4)? Почему мы считаем, что (-1)(-1)=1?
Эти вопросы не так тривиальны, как может показаться. Найти правильный ответ будет легче, если сформулировать вопрос иначе: что плохого произойдет, если мы будем считать, например, что (-1)(-1)=(-1)? Ответ прост: в этом случае хорошо известные свойства сложения и умножения натуральных чисел (коммутативность, ассоциативность и др.) не будут выполняться для целых чисел. Можно показать, что обычное определение операций над отрицательными числами единственно возможное, если мы хотим сохранить привычные свойства операций сложения и умножения.
Тут следует остановиться: какие же именно свойства сложения и умножения мы хотим сохранить? Ведь если бы мы хотели сохранить все свойства, то введение отрицательных чисел было бы не только излишне, но и вредно: свойство “уравнение х+3=2 не имеет решений”, верное для натуральных чисел, становится неверным для целых! Если же мы ничего не хотим сохранить, то задача становится столь же легкой, сколь и пустой: можно определить операции с отрицательными числами как угодно.
Возвращаясь к истории развития понятия числа, мы видим, что введение отрицательных чисел не доставляет полного удовлетворения: уравнение 2x=3 по-прежнему не имеет решения. Это побуждает ввести рациональные (дробные) числа. Но и этого недостаточно: от рациональных чисел приходится перейти к действительным. В результате получается последовательность множеств NÌZÌQÌR (натуральных, целых, рациональных и действительных чисел; АÌ В означает, что всякий элемент множества А принадлежит множеству B. В этой последовательности каждое следующее множество включает в себя предыдущее, при этом имевшиеся в предыдущем операции продолжаются на следующее, более широкое, множество, сохраняя свои полезные свойства.
Мы хотим продолжить эту последовательность еще на одни член, получив последовательность NÌZÌQÌRÌ*R, где *R – множество гипердействительных чисел. Новый шаг расширения будет иметь много общего с предыдущими: мы продолжим на *R имеющиеся в R операции, сохранив их полезные свойства. Но будут и 2 важных отличия.
Во-первых, если расширение (переход от R к *R) можно выполнить многими различными способами: можно построить существенноразличные множества *R, ни одно из которых ничем не выделяется среди остальных. В то жо время, все предыдущие шаги нашего расширения числовой системы от N к R были в некотором смысле однозначны.
Во-вторых, есть различие в наших целях. Если прежде (двигаясь от N к R) мы строили новую числовую систему прежде всего для того, чтобы исследовать ее свойства и ее применения, то построенная система *R предназначается не столько для того, чтобы исследовать ее свойства, сколько для того, чтобы с ее помощью исследовать свойства R. Впрочем различие и не так велико: и раньше расширение числовой системы было одним из способов получения новых знаний о старых объектах. Кроме того, множество *R можно рассматривать, быть может, как соответствующее физической реальности в не меньшей (и даже в большей) степени, чем R.
Итак, необходимо расширить множество R действительных чисел до большего множества *R, содержащего бесконечно малые, сохранив при этом все полезные свойства R. Центральный вопрос состоит в том, какие именно свойства действительных чисел мы желаем сохранить. Ответим на этот вопрос не сразу, начав с наиболее простых свойств действительных чисел.
Прежде всего, мы хотим, чтобы гипердействительные числа можно было складывать, умножать, вычитать и делить, чтобы эти операции обладали обычными свойствами, называемыми «аксиомами поля». Сформулируем их.
Среди гипердействительных чисел должны быть выделены числа 0 и 1; определены операции сложения, умножения взятия противоположного, а также операция взятия обратного. При этом должны выполняться такие свойства:
(1) a+b=b+a (2) a+(b+c)=(a+b)+c (3) a+0=a (4) a+(-a)=0 (5) ab=ba
(6) a(bc)=(ab)c (7) a*1=a (8) a(b+c)=ab+ac (9) a*(1/a)=1 при a<>0.
Множество с операциями, обладающими этими свойствами, называется полем. Требования (1)-(9) можно сформулировать так: *R должно быть полем.
Кромеарифметических операций, зададим на гипердействительных числах порядок. Для любых двух различных гипердействительных чисел должно быть определено какое из них больше. При этои должны выполняться такие свойства:
(10) если a>b, b>c, то a>c
(11) если a>b, то a+c>b+c для любого с
(12) если a>b, c>0, то ac>bc
если a>b, c<0, то ac<bc
Поле, в котором введен порядок с такими свойствами, называется упорядоченным полем. Требования (10)-(12) можно сформулировать так: *R должно быть упорядоченным полем.
Мы хотим, чтобы среди гипердействиетльных чисел были все действительные. При этом операции и порядок на R и на *R должны быть соглсованы. Это требование можно сформулировать так: упорядоченное поле *R должно быть расширением упорядоченного поля R.
Что же нового мы ожидаем от *R? Бесконечно малых.
Определение. Элемент e>=0 упорядоченного поля называется бесконечно малым, если e<1, e+e<1. e+e+e<1 и т.д. Отрицательное e называется бесконечно малым, если –e бесконечно мало.
Существование ненулевых бесконечно малх равносильно нарушению аксиомы Архимеда для гипердействительных чисел. Упорядоченные поля, в которых справедлива аксиома Архимеда и нет бесконечно малых, называют архимедово упорядоченными. Те поля, в которых аксиома Архимеда невернаи есть бесконечно малые, называют неархимедово упорядоченными (неархимедовым).
В этих терминах треюования можно сформулировать так: система гипердействительных чисел должна быть неархимедово упорядоченным полем, являющимся расширением упорядоченного поля действительных чисел.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах