Функция многих переменных

А=2, В=0, С=2,

=АС-В2= 2*2-02= 4>0, А>0.

Значит, в точке М(-2;1) функция имеет минимум: min z=z(-

2;1)=(-2+2)2+(1-1)2=0.

Лекция 12. Тема – Интегральное исчисление функций. Первообразная. Неопределённный интеграл. Методы интегрирования.

План.

1. Первообразная функции. Неопределённный интеграл. Свойства неопределённого интеграла.

2. Таблица основных интегралов. Метод подстановки (замены переменной).

3. Интегрирование по частям. Интегралы, которыене берутся.

Интеграл – одно из центральных понятий математики. Оно возникло в связи с двумя задачами: 1) о восстановлении функции по её производной; 2) о вычислении площади криволинейной трапеции. Эти задачи приводят к двум связанным между собой видам интегралов: определённого и неопределённого. Термин ”интеграл” ввёл Якоб Бернулли в 1690 году.

1. Функция F(x) называется первообразной функции f(x) на некотором промежутке, если во всех точках этого промежутка выполняется равенство F’(x)= f(x).

Например. первообразными функции f(x)=3х2 будут функции х3, х3+1, х3+0,5 и вообще F(x)= х3+С, где С – произвольная постоянная, поскольку F’(x)=( х3+С)’=3х2. Этот пример показывает, что если функция f(x) имеет одну первообразную, то она имеет их бесконечно много. Возникает вопрос: как найти все первообразные данной функции, если известна одна из них? Ответ даёт такая теорема.

Теорема 6.1 Если F(x) – первообразная функции f(x) на некотором промежутке, то всякая другая первообразная функции f(x) на этом промежутке имеет вид F(x) +С, где С – произвольная постоянная.

Множество всех первообразных F(x) +С функции f(x) называют неопределённым интегралом функции f(x) и обозначают . Таким образом, по определению

= F(x) +С, если F’(x)= f(x).

При этом f(x) называют подынтегральной функцией, f(x)dх – подынтегральным выражением, х – переменной интегрирования, знак - знаком интеграла, С – постоянной интегрирования.

Операцию нахождения первообразной функции f(x) называют интегрированием этой функции.

Операции дифференцирования и интегрирования являются обратными по отношению друг к другу.

Возникает вопрос: для каждой ли функции f(x) существует первообразная, а значит, и неопределённый интеграл? Оказывается не для каждой. Но справедлива такая

Теорема 6.2. Всякая непрерывная на промежутке [a;b] функция имеет на этом промежутке первообразную.

СВОЙСТВА НЕОПРЕДЕЛЁННОГО ИНТЕГРАЛА

1. ()’= f(x).

2. = F(x) +С.

3. d= f(x)dх.

4. =.

5. Если = F(x) +С и и=- произвольная функция, которая имеет непрерывную производную, то

= F(и) +С.

В частности,

=F(ax+b) +С.

Из очень важного свойства 5 следует, что таблица интегралов остаётся верной независимо от того, является ли переменная интегрирования независимой переменной или произвольной дифференцированной функцией. Таким образом, из одной формулы можно получать много других.

Пример.

===+С, ==+С, =+С.

2. ТАБЛИЦА ОСНОВНЫХ ИНТЕГРАЛОВ

1. .

2.

3. а>0, .

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Непосредственным интегрированием называют вычисление интегралов с помощью основных свойств неопределённого интеграла и таблицы интегралов.

Пример.

Метод подстановки является одним из основных методов интегрирования. Больше того, изучение методов интегрирования в основном сводится к выяснению того, какую подстановку надо сделать в том или ином случае.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы