Функция многих переменных
.
Последняя формула называется формулой Муавра.
При делении комплексных чисел имеем
.
Рассмотрим извлечение корня из комплексного числа. Если для данного комплексного числа надо найти корень п-й степени , то по определению корня и формуле Муавра имеем
.
Отсюда
, .
Поскольку r и положительные, то , где под корнем понимают его арифметическое значение. Поэтому
.
Давая k значения 0,1,2,…, п -1, получим п разных значений корня. Для других значений k аргументы будут отличаться от найденных на число, кратное 2, поэтому значения корня будут совпадать с уже найденными.
Известно, что показательную функцию с мнимым показателем можно выразить через тригонометрические функции по формуле Эйлера . Отсюда следует, что всякое комплексное число можно записать в форме , которая называется показательной формой комплексного числа z.
3. Уравнение вида
(7.11)
где р, q – постоянные числа, называется линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами. Для его решения сначала надо составить характеристическое уравнение
(7.12)
В зависимости от корней уравнения (7.12) общее решение уравнения (7.11) приобретает один из таких видов:
1) , если действительные и ;
2) , если действительные и ;
3) , если , ().
Пример 7.8. Решить уравнение
(7.13)
Решение. Сначала составим и решим соответствующее характеристическое уравнение:
D = 32- 4*5= -11,
Характеристическое уравнение имеет два сопряжённых корня:
.
Поэтому общее решение уравнения (7.13) будет таким:
.
Лекция 17. Тема – Ряды. Числовые ряды. Признаки сходимости. Степенные ряды.
План.
1. Основные понятия. Необходимое условие сходимости ряда.
2. Признаки сравнения. Признаки Даламбера и Коши. Признак Лейбница.
3. Степенные ряды. Теорема Абеля. Ряды Тейлора и Маклорена.
1. Пусть задана последовательность чисел:
Выражение
называется числовым рядом; числа называются членами ряда; число называется общим членом ряда.
Сумма п первых членов ряда
называется п-ой частичной суммой ряда.
Если существует конечный предел
,
то число S называют суммой ряда , а сам ряд называют сходящимся. Если же предел не существует или равен бесконечности, то говорят, что ряд расходящийся.
Рассмотрим ряд
.
Это сумма геометрической прогрессии, q – знаменатель прогрессии. Если , прогрессия называется убывающей. Сумму первых п членов этой прогрессии находят по формуле
. (8.1)
Если , то и . Значит, бесконечно убывающая геометрическая прогрессия всегда сходится. Если , то и прогрессия расходится.
Если числовой ряд сходится, то разность между его суммой S и частичной суммой называется п-м остатком ряда, то есть
= S-.
Остаток ряда является той погрешностью, которая получится, если вместо S взять . Поскольку , то, взяв достаточно много первых членов сходящегося ряда, можно сумму этого ряда вычислить с любой точностью.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах