Функция многих переменных
0 а х хх b x
Разобьём отрезок [a;b] произвольным образом на п частей
точками а=х<x<…< х< х<… <х=b.
На каждом отрезке [х; х] возьмём произвольную точку и вычислим значение f(). Тогда площадь Sзаштрихованного прямоугольника, будет равна
S= f(), где = х- х.
Площадь S всей трапеции приблизительно равна
S.
Пусть . Естественно считать, что
S. (6.2)
К пределам вида (6.2) приводят много других задач, поэтому возникает необходимость всестороннего изучения таких пределов независимо от конкретного содержания той или иной задачи.
Пусть функция у= f(x) определена на отрезке [a;b]. Разобьём этот отрезок на п произвольных частей точками
а=х<x<…< х< х<… <х=b.
На каждом из созданных отрезков [х; х] возьмём произвольную точку и составим сумму
, где = х- х,
которую будем называть интегральной суммой функции f(x).
Обозначим . Если существует конечный предел интегральной суммы , при , который не зависит ни от способа разбиения отрезка [a;b], ни от выбора точек, то этот предел называется определённым интегралом функции f(x) на отрезке [a;b] и обозначается символом, где функция f(x) называется интегрированной на отрезке [a;b].
То есть, по определению,
=.
Числа а и b называются соответственно нижним и верхним пределом интегрирования.
Относительно существования определённого интеграла имеет место такая теорема
Теорема 6.3. Если функция f(x) ограничена на отрезке [a;b] и непрерывна на нём везде, кроме конечного числа точек, то она интегрируема на этом отрезке.
2. Если f(x), то равен площади соответствующей криволинейной трапеции: =S. Если f(x)<0, то = -S.
Отсюда следует, что если на симметричном относительно начала координат отрезке [-a;а], а>0 задана нечётная функция, то=0. Например, Если функция f(x) чётная, то =2.
Свойства определённого интеграла
Будем считать, что все интегралы, которые рассматриваются, существуют.
1. =. Величина определённого интеграла не зависит от обозначения переменной интегрирования.
2. =0.
3. = -.
4. =+.
5. =А.
6. =.
7. Если на отрезке [a;b] f(x), то .
8. Если т и М – соответственно наименьшее и наибольшее значения функции f(x), на отрезке [a;b], то
т(b-a) M(a-b).
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах