Статистическое исследование свойств псевдослучайных чисел получаемых методом Джона фон Неймана
Закон распределения случайной величины Х определяет вероятность того, что она примет какое-нибудь значение, не меньшее α. Пусть эта вероятность Р(Х≥α)=β. Согласно принципу практической уверенности при однократном наблюдении происходит немаловероятное событие. Поэтому если величина α была получена как результат наблюдения именно случайной величины Х, т.е. при распределе
нии рассматриваемого признака по предполагаемому теоретическому закону, то вероятность β не должна быть малой. Если же вероятность β оказалась весьма малой, то это означает, что наступило маловероятное событие, которое в соответствии с тем же принципом практической уверенности при распределении признака в генеральной совокупности по предложенному закону не должно было наступить. Наступление события с такой вероятностью объясняется, по-видимому, тем, что наблюдалась случайная величина, распределенная не по предположенному закону, а по какому-то другому. Таким образом, в случае, когда вероятность β не мала, расхождения между эмпирическим и теоретическим распределениями следует признать несущественными, случайными, а опытное и теоретическое распределения – не противоречащими, согласующимися друг с другом. Если же вероятность β мала, то расхождения между опытным и теоретическим распределениями существенны, объяснить их случайностью нельзя, а гипотезу о распределении признака по предложенному теоретическому закону следует считать не подтвердившейся, она не согласуется с опытными данными. По-видимому, при выборе предполагаемого теоретического закона не были в достаточной степени учтены особенности имеющихся опытных данных или при этом сказались субъективные качества исследователя. Следует внимательнее изучить опытные данные и попытаться найти новый теоретический закон в качестве предполагаемого для рассматриваемого признака, который лучше, полнее учитывал бы особенности опытного распределения.
Необходимо только установить, какие вероятности считаются «малыми». Обычно это вероятности, не превосходящие 0,01. В других случаях считают малыми вероятности, не превосходящие 0,05.
Существует много критериев согласия. Рассмотрим критерий χ-квадрат (Пирсона) и критерий Колмогорова.
Критерий согласия (Пирсона)
Пусть в результате n наблюдений получен вариационный ряд с опытными частотами n1, n2, …, nm. Тогда сумма их n1+n2+ +nm=n. Анализ опытных данных привел, допустим, к выбору некоторого теоретического закона распределения в качестве предполагаемого для рассматриваемого признака, а по опытным данным найдены его параметры (если они не были известны заранее). С помощью самого закона вычислены теоретические частоты n01, n02, …,n0m, соответствующие эмпирическим частотам. Сумма теоретических частот также равна объему совокупности n:
n01+ n02+…+n0m=n.
В качестве меры расхождения теоретического и эмпирического рядов частот можно взять величину
Из этого выражения видно, что χ2 равно нулю лишь при совпадении всех соответствующих эмпирических и теоретических частот: ni =n0i (i = 1, 2, …, m). В противном случае χ2 отлично от нуля и тем больше, чем больше расхождения между указанными частотами.
Величина χ2 , определяемая равенством, является случайной, которая как можно показать, имеет χ2-распределение, где k – число степеней свободы. Число k = m – s, где m – число групп эмпирического распределения, а s – число параметров теоретического закона, найденных с помощью этого распределения, вместе с числом дополнительных соотношений, которым подчинены эмпирические частоты. Если же эмпирическое распределение не использовалось для нахождения параметров теоретического закона и теоретических частот, а эмпирические частоты не связаны никакими дополнительными соотношениями, то k равно числу групп эмпирического распределения, причем в обоих случаях наблюденные частоты должны быть не малы. Малые частоты следует объединить с соседними с тем, чтобы укрупнить группы. Это будет показано на приводимом ниже примере.
Таким образом, схема расчета критерия согласия χ2 следующая:
По опытным данным выбрать в качестве предполагаемого закон распределения изучаемого признака и найти его параметры.
Определить теоретические частоты с помощью полученного закона распределения. Если среди опытных частот имеются малочисленные, объединить их с соседними.
По формуле (1) вычислить величину χ2. Пусть она оказалась равной χ20.
Определить число степеней свободы k.
В приложении 4 по полученным значениям χ2 и k найти вероятность β того, что случайная величина, имеющая χ2-распределение, примет какое-нибудь значение, не меньшее χ20 : P(χ2 χ20) =
.
Сформулировать вывод, руководствуясь общим принципом применения критериев согласия, а именно: если вероятность β больше 0.01, то имеющиеся расхождения между теоретическими и опытными частотами следует считать несущественными, а опытное распределение – согласующимся с теоретическим. В противном случае (β<0.01) указанные расхождения признаются неслучайными, а закон распределения, избранный в качестве предполагаемого теоретического, отвергается.
Критерий Колмогорова
На практике кроме критерия χ2 часто используется критерий Колмогорова, в котором в качестве меры расхождения между теоретическими и эмпирическими распределениями рассматривают максимальное значение абсолютной величины разности между эмпирической функцией распределения и соответствующей теоретической функцией распределения
называемое статистикой критерия Колмогорова.
Доказано, что какова бы ни была функция распределения F(x) непрерывной случайной величины X, при неограниченном увеличении числа наблюдений (n) вероятность неравенства P(D
) стремится к пределу
задавая уровень значимости α, из соотношения
можно найти соответствующее критическое значение .
Проверка гипотезы о равномерном распределении
При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности f(x) необходимо вычислив по имеющейся выборке значение, оценить параметры a и b по формулам
,
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах