Представление функции рядом Фурье
Эта сумма, очевидно, равна , если в точке функция непрерывна.
Доказательство. Отметим, что равенство (14) имеет место для каждой функции f(x), удовлетворяющей поставленным условиям. Если, в частн
ости, взять , то , и из (14) получим, что
Умножая обе части равенства на постоянное число и вычитая результат из (14), найдем
для нашей цели нужно доказать, что интеграл справа при стремится к нулю.
Представим его в виде
(15)
где положено
(16)
если бы нам удалось установить что эта функция кусочно-непрерывна, то из леммы предыдущего параграфа следовало бы уже, что интеграл (15) имеет предел нулю при . Но в промежутке функция g(x) вообще непрерывна, за исключением разве лишь конечного числа точек, где она может иметь скачки—ибо такова функция f(x). Остается открытым лишь вопрос о поведении функции g(x) при .
Мы докажем существование конечного предела
;
положив тогда g(0)=K, мы в точке t=0 получим непрерывность, и применение леммы окажется оправданным. Но второй множитель в правой части равенства (16) явно имеет пределом единицу; обратимся к выражению квадратных скобках.
Пусть, для простаты, сначала точка лежит внутри промежутка, где функция f(x) дифференцируема. Тогда , и каждое из соотношений
(17)
стремится к пределу , а — к нулю. Если же есть «точка стыка», то при этом она может оказаться как точкой непрерывности, так и точкой разрыва. В первом случае мы опять столкнемся с отношением (17), но они будут стремиться на этот раз к различным пределам, соответственно—к производной справа и к производной слева. К аналогичному результату придем и в случае разрыва, но здесь заменится значениями тех функций, от склеивания которых получилась данная, а пределами отношений (17) будут односторонние производные упомянутых функций при .
Итак, наше заключение справедливо во всех случаях.
Случай непериодической функции
Вся построенная выше теория исходила из предположения, что заданная функция определена для всех вещественных значений x и притом имеет период . Между тем чаще всего приходится иметь дело с непериодической функцией f(x), иной раз даже заданной только в промежутке .
Что бы иметь право применить к такой функции изложенную теорию, введем взамен нее вспомогательную функцию определенную следующим образом. В промежутке мы отождествляем с f(x):
(18)
затем полагаем
а на остальные вещественные значения x распространяем функцию по закону периодичности.
К построенной таким образом функции с периодом можно уже применить доказанную теорему разложения. Однако, если речь идет о точке , строго лежащей между и , то, ввиду (18), нам пришлось бы иметь дело с заданной функцией . По той же причине и коэффициенты разложения можно вычислить по формулам вычисления коэффициентов не переходя к вспомогательной функции. Короче говоря, все доказанное выше непосредственно переносится на заданную функцию , минуя вспомогательную функцию .
Особого внимания, однако, требуют концы промежутка . При применении к функции теоремы предыдущего параграфа, скажем, в точке , нам пришлось бы иметь дело как со значениями вспомогательной функции справа от , где они совпадают уже со значениями справа от ю Поэтому для в качестве значения надлежало бы взять
.
Таким образом, если заданная функция даже непрерывна при , но не имеет периода , так что , то—при соблюдении требований кусочной дифференцируемости—суммой ряда Фурье будет число
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах