Представление функции рядом Фурье
Предположим, далее, что функция задана лишь в промежутке . Желая разложить ее в этом промежутке в ряд Фурье мы дополним определение нашей функции для значений x в промежутке по произволу, но с сохранением
кусочной дифференцируемости, а затем применим сказанное в пункте «Случай непериодической функции».
Можно использовать произвол в определении функции в промежутке так, что бы получить для разложение только лишь по косинусам или только по синусам. Действительно, представим семе, что для мы полагаем , так что в результате получается четная функция в промежутке . Ее разложение, как мы видели, будет содержать одни лишь косинусы. Коэффициенты разложения можно вычислять по формулам (22), куда входят лишь значения первоначально заданной функции .
Аналогично, если дополнить определение функции по закону нечетности, то она станет нечетной и в ее разложении будут одни лишь синусы. Коэффициенты ее разложения определяются по формулам (24).
Таким образом, заданную в промежутке функцию при соблюдении условий оказывается возможным разлагать как по косинусам, так и по одним лишь синусам.
Особого исследования требуют точки и . Здесь оба разложения ведут себя по-разному. Предположим, для простоты, что заданная функция непрерывна при и , и рассмотрим сначала разложение по косинусам. Условие , прежде всего, сохраняет непрерывность при , так что ряд (21) при будет сходиться именно к . Так как, далее,
то и при имеет месть аналогичное обстоятельство.
Иначе обстоит дело с разложением по синусам. В точках и сумма ряда (23) явно будет нулем. Поэтому она может дать нам значения и , очевидно, лишь в том случае, если эти значения равны нулю.
Если функция задана в промежутке то, прибегнув к той же замене переменной, что и в предыдущем параграфе, мы сведем вопрос о разложении ее в ряд по косинусам
или в ряд по синусам
к только что рассмотренному. При этом коэффициенты разложений вычисляются, соответственно, по формулам
или
.
Примеры разложения функций в ряд Фурье
Функции, которые ниже приводятся в качестве примеров, как правило, относятся к классу дифференцируемых или кусочно-дифференцируемых. Поэтому сама возможность их разложения в ряд Фурье—вне сомнения, и на этом мы останавливаться не будем.
Все задания взяты из Сборника задач и упражнений по математическому анализу, Б. Н. Демидович.
№ 2636. Функцию разложить в ряд Фурье.
Так как функция является нечетной, то, следовательно, будет четной. Поэтому ее разложение в ряд Фурье содержит одни лишь косинусы.
Найдем коэффициенты разложения;
№ 2938. Разложить в ряд Фурье функцию . Изобразить этой функции и графики нескольких частных сумм ряда Фурье этой функции.
Функция нечетная, поэтому ее разложение будет содержать одни лишь синусы.
То есть, получается, что при четных значениях n коэффициент , а следовательно и все слагаемое, обращается в нуль. Поэтому суммирование идет только лишь по четным значениям n.
Ряд Фурье для этой функции примет следующий вид:
.
Ниже изображены графики функций и нескольких частных сумм ряда Фурье:
График функции , , и
№ 2940. в интервале .
Функция нечетная.
№ 2941. в интервале .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах