История геометрии

3. Геометрия новых веков

. Прокл был уже, по-види­мому, последним представителем греческой геометрии. Римляне не внесли в геометрию ничего существенного. Гибель античной культуры, как известно, привела к глубо­кому упадку научной мысли, продолжавшемуся около 1000 лет, до эпохи Возрождения. Это не значит, однако, что математика в этот период совершенно заглохла. Пос

редни­ками между эллинской и новой европейской наукой явились арабы. Когда несколько улегся ярый религиозный фана­тизм, царивший в эпоху арабских завоеваний, в условиях быстро развивавшейся торговли, мореплавания и городского строительства стала развертываться и арабская наука, в ко­торой математика играла очень важную роль. Евклид был впервые переведен на арабский язык, по-видимому, в IX в. За этим последовал перевод сочинений других греческих геометров, многие из которых только с этих переводах до нас и дошли. Однако математические интересы арабов были со­средоточены не столько на геометрии, сколько на арифметике и алгебре, на искусстве счета в широком смысле этого слова. Арабы усовершенствовали систему счисления и основы ал­гебры, заимствованные от индусов; но в области геометрии они не имели значительных достижений.

Интерес к счету перешел и к европейским математикам раннего Возрождения. Медленно — с начала XIII в. (Леонард Пизанский) и до конца XV в. (Лука Пачоли) — в борьбе абацистов с алгорифмиками устанавливается современная система счисления, а в следующем, XVI в. начинает выкри­сталлизовываться и современная алгебра. Система симво­лических обозначений современной алгебры ведет свое начало от Виеты, которому принадлежат и первые приложе­ния алгебры к геометрии. Записав квадратные уравнения в общей форме и рассматривая неизвестную как отрезок, а коэффициенты уравнения как данные отрезки или отноше­ния данных отрезков, Виета дает общие методы построения неизвестного отрезка с помощью циркуля и линейки. Он показывает далее, что решение таких же задач 3-й и 4-й сте­пени всегда может быть приведено к построению двух сред­них пропорциональных. Во всем этом как будто нет ничего нового; по существу все это было известно Евклиду, Герону, Проклу. Но новая, более общая схема дает возможность объединить цикл разрозненных задач, интересовавших гре­ческих геометров, установить общую их характеристику, рационально классифицировать их по характеру уравнения, к которому приводит алгебраический метод решения задачи. Все эти приемы в дальнейшем своем развитии составили небольшую дисциплину, известную в настоящее время под названием «Приложения алгебры к геометрии». Характер­ным для нее является сведение решения геометрической задачи к определенному алгебраическому уравнению или к определенной системе алгебраических уравнений. В этих применениях нет какого-либо специального, для геометрии придуманного замысла. Это — прием, проходящий через приложения алгебры во всех дисциплинах, где она приме­няется для разыскания неизвестных величин: задания выра­жаются определенной системой уравнений, решение которых дает значения неизвестных. Это объединение алгебры с геометрией вскоре привело к гораздо более углубленному и своеобразному применению алгебраического метода в гео­метрическом исследовании. Промежуточное значение (во вся­ком случае хронологически) имеют идеи Орезма (точнее, Орема), относящиеся к XIV в. Схоластики были очень склон­ны к установлению соотношений между различными величи­нами, соотношений иногда действительно существующих, но чаще иллюзорных. В этом коренилась, конечно, идея функ­циональной зависимости, которой Орезм первый пытался дать графическое выражение — в виде того, что мы в на­стоящее время называем диаграммой. Вероятно, туманные рассуждения, с которыми этот метод, столь простой но суще­ству, был связан у схоластиков, повели к тому, что метод Орезма в ту пору значительного распространения не получил и прямого влияния на дальнейшую эволюцию геометрии не оказал. В эпоху Возрождения зародилась и так называемая изобразительная геометрия.

Основным препят­ствием для дальнейшего развития геометрии было отсут­ствие общих методов геометрического исследования, кото­рые содержали бы указания, как подойти к каждой частной геометрической задаче. Нужда в таком общем методе чрез­вычайно назрела. С развитием алгебры, принесшей с собой средства математического исследования очень широкой общности, было естественно в них искать и путей к геометри­ческому исследованию. Действительно, в XVII в. два гениальных французских математика, Ферма и Декарт, почти одновременно выдвигают идеи, приведшие к новому и очень широкому расцвету геометрической мысли. Эти идеи были изложены Ферма в сочинении «Введение в учение о геометрических местах на плоскости и в пространстве», которое было извест­но в кругу парижских математиков еще в 1637 г., но опуб­ликовано было только после смерти автора (1679 г.). В письме к Робервалю Ферма изложил сущность своих идей еще почти на 10 лет раньше. Взгляды Декарта изложены в небольшом его сочинении «Геометрия», появившемся в 1637 г. в качестве приложения к сочинению «Рассуждение о методе». Оба геометра явно находились под большим влиянием Аполлония; но установ­ленный ими метод, ныне широко известный под названием аналитической геометрии, все-таки остается вполне своеоб­разным. От приемов Аполлония он отличается тем, что соот­ношения, определяющие геометрическое место, выражены в форме уравнений символической алгебры; от методов при­менения алгебры к геометрии, предложенных Виета, он отли­чается тем, что здесь преобладающее значение приобретают неопределенное уравнение и неопределенная система уравне­ний; коренной его особенностью является метод координат, в применении которого заключается наибольшая его сила. Координатами по существу пользовался и Аполлоний. Но у него ордината точки параболы есть ее расстояние от оси этой параболы; координация всегда неразрывно связана с самой кривой. Декарту (более чем Ферма) принадлежит ясно выраженный замысел координации точек плоскости относительно произвольно выбранных осей, а это и есть самая существенная сторона дела. В совокупности полу­чился метод, дающий возможность выразить те соотношения, которыми определяется геометрическое место, при помощи уравнений, связывающих координаты его точек. Геометриче­ские соотношения были уложены в общие схемы аналити­ческой функциональной зависимости, и были даны общие методы изучения этой зависимости средствами алгебры и анализа. Был найден ключ к широкой новой постановке геометрического исследования. Ферма дал систематическую сводку уравнений важнейших кривых. У Декарта этого нет, но зато у него шире и глубже очерчены общие идеи метода: самое сочинение должно было служить примером того, какое значение имеет метод. Конечно, на то, чтобы провести этот метод систематически, понадобилось значительное время. У Декарта речь идет только о координации точек на плоскости; естественное обобщение — определение точки в пространстве тремя координатами —было сделано Ла-Гиром, много содействовавшим развитию метода Декарта. Первое же систематическое изложение аналитической геометрии как целого дал Эйлер во втором томе своего «Введения в анализ бесконечных».

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы