Модернизация поперечно–строгального станка с ходом ползуна 700 мм на базе модели 7307
Один конец штанги находится в опоре 1, а другой во вкладышах фрикционной коробки 14. Вкладыши из тормозной фрикционной ленты поджимаются к штанге гайками 13 на усилие, необходимое для подъема резца при обратном ходе ползуна. В начале обратного хода ползуна штанга 6 остается неподвижной на ход 7 мм, так как штанга тормозится тормозными вкладышами, находящимися во фрикционной коробке 14, и резец
поднимается над деталью.
Как только опора 1 доходит до вилки 5, штанга начинает двигаться вместе с ползуном, преодолевая силу трения во вкладышах фрикционной коробки и на всей длине хода ползуна; резец находится в приподнятом положении. Для уменьшения усилия трения во вкладышах фрикционной коробки 14 установлена пружина 2, которая рассчитана на усилие примерно 8 кгс, которое регулируется гайкой 3. Для равномерного распределения нагрева штанги 6, возникающего от силы трения во вкладышах фрикционной коробки, в штангу 6 необходимо на две трети объема залить эмульсию или машинное масло.
В начале перемещения ползуна с суппортом в направлении рабочего хода штанга остается неподвижной. Пружина 8 (см. рис. 15) возвращает параллелограмм в исходное положение, тем самым и резец возвращается в рабочее положение. Ползун, пройдя 7 мм свободного хода относительно штанги в (см. рис. 15) в направлении рабочего хода, движется вместе со штангой, преодолевая силу трения во вкладышах фрикционной коробки 14. Включать или выключать механизм автоматической откидки резца рукояткой 15. Нагрев штанги при длительной непрерывной работе допускается до 70° С. Для транспортировки ползуна на верхней плоскости его имеются два резьбовых отверстия М20, заглушённых пробками. В соединение винт-гайка установка саморегулируемый зазор /5/.
Рисунок 15 – Ползун
3.17 Проектирование узла кулисный механизм
Кулисный механизм служит для преобразования вращательного движения кулисной шестерни в возвратно-поступательное движение ползуна (рис. 16).
Корпус 14 механизма смонтирован в корпусе станины и вращается на двух конических роликоподшипниках, которые регулируют гайками /6/.
Люфт в подшипниках выбирают так, чтобы при обкатке, станка на максимальных двойных ходах ползуна в течение 30 мин температура подшипников не поднималась выше 85° С.
К корпусу 14 жестко крепится зубчатый венец, который и передает вращательное движение. В направляющих корпуса 14 находится палец-гайка 9, на котором надет камень 10.
Рисунок 16 – Кулисный механизм
3.18 Расчет коробки подач
Определение диапазона регулирования подач
Общий диапазон регулирования привода Rn, определяется по формуле /7/:
, (3.67)
где Smax – наибольшая горизонтальная подача, мм/дв. ход
Smin – наименьшая горизонтальная подача, мм/дв. ход
Подставив известные значения nmaxи nmin, получим:
(3.68)
Расчет числа зубьев храпового колеса
Согласно кинематической схемы поперечины и стола необходимо определить угол поворота храпового колеса при Smin и Smax
Определяем угол поворота конического колеса z1=32 a1 (град.) по формуле:
, (3.69)
где S – подача стола, мм/дв. ход
t – шаг винта, мм.
Определение угла поворота a2 (град.) зубчатого колеса z2=18:
, (3.70)
где z1– число зубьев ведущего колеса,
z2– число зубьев ведомого колеса,
Определение угла поворота a3 (град.) зубчатого колеса z4=46:
, (3.71)
где z3 – число зубьев ведущего колеса,
z4 – число зубьев ведомого колеса,
Определение угла поворота a4 (град.) зубчатого колеса z6=46:
, (3.72)
где z5– число зубьев ведущего колеса,
z6 – число зубьев ведомого колеса,
4. Исследовательская часть
4.1 Расчеты несущей системы модернизированного станка модели 7307
В настоящее время при создании сложных технических объектов все большее внимание уделяется внедрению систем инженерного анализа. Системы компьютерного инженерного анализа не только позволяют оценить принципиальную работоспособность будущей конструкции (например, по условиям прочности) – они нашли широкое применение при моделировании технологических процессов металлообработки, ковки и штамповки, литья металлов и пластмасс.
В данном проекте использовался один из наиболее распространенных в нашей стране конечно-элементного пакет ANSYS, который применяется для инженерного анализа несущих систем станков /11/.
Для расчетов была приготовлена модель станка, которая была спроектирована в системе КОМПАС – 3D. Она представлена на рисунке 17.
Рисунок 17 – Расчетная модель станка
В процессе работы были произведены четыре вида анализа несущей системы станка. Это статический, модальный, тепловой и термодеформационный анализ. Их результаты представлены ниже.
Расчет на жесткость (статический расчет)
На рисунке 18 представлено деформированное состояние несущей системы станка после проведения расчета.
Рисунок 18 – Деформированное состояние станка
На рисунке 19 показаны результаты статического расчета в контурном представлении
Рисунок 19 – Контурное представление результата статического расчета
Модальный расчет
Модальный анализ выполняется для того, чтобы построить часть динамических характеристик рассматриваемой модели: собственные частоты (модальные частоты); амплитудно-частотные характеристики. Знание этих характеристик позволяет принять решение о динамическом качестве модели.
В процессе выполнения расчета обнаружились десять собственных частот. Результаты расчет на четырех из них представлены на рисунках 20 – 23.
Рисунок 20 – 1-я мода
Рисунок 21 – 2-я мода
Рисунок 22 – 3-я мода
Рисунок 23 – 4-я мода
Тепловой расчет
При решении задач теплообмена в Ansys устанавливается распределения температур в рассматриваемой модели объекта. Кроме того, можно использовать результаты теплового расчета для вычисления тепловых напряжений и перемещений.
Перенос тепла в общем случае может осуществляться в трех формах: теплопроводности, конвекции и излучении. Распространение тепла в твердом теле происходит благодаря теплопроводности. Перенос тепла посредством теплопроводности обусловлен наличием вещественной среды, и тем, что теплообмен совершается только между непосредственно соприкасающимися частицами тела. Результат теплового расчета представлен на рисунке 24.
Другие рефераты на тему «Производство и технологии»:
- Выбор материала для изготовления женской одежды повседневного пользования
- Деформационные способы получения полимерных пленок
- Плазменная обработка. Плазмотрон
- Гидромеханические процессы химической и пищевой технологии
- Классификация оборудования нефтегазоперерабатывающего завода по монтажным признакам
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды