Моделирование газофазных процессов, протекающих при гетерогенно-каталитическом восстановлении оксидов азота
Все оксиды азота проявляют резко выраженные окислительные свойства, восстанавливаясь до азота, а в ряде случаев до гидроксиламина и аммиака.
Жидкофазное восстановление окиси диазота протекает в растворах H2SO4 до азота, в присутствии катионов Sn (II) – до гидроксиламина, а Ti (III) – до аммиака. Оксид азота в кислых растворах восстанавливается ионами Сr (II) до гидроксиламина, а в нейтрал
ьных – до аммиака.
Газофазное восстановление оксидов азота типичными реагентами-восстановителями (H2, CO, NH3, CH4) и другими органическими соединениями протекает необратимо при температурах 300-1500 К. Применение катализаторов значительно снижает температуру реакции до 250-5000С. Процесс восстановления оксидов азота, протекающий в присутствии кислорода называют селективным [3].
Токсическое воздействие оксидов азота на организм человека.
При сгорании топлив выбрасываются в основном NO и NO2, которые суммарно обозначаются как NOx. Поскольку NO уже при комнатной температуре относительно легко окисляется кислородом до NO2, их влияние оценивают совместно. Кроме того, большинство методик измерения концентраций оксидов азота в газах сводится к определению NO2, для чего другие оксиды дополнительно окисляют, а суммарную концентрацию NOx приводят в расчете на NO2.
Все оксиды азота физиологически активны и поэтому опасны для человека. Оксид диазота N2O (закись азота, “веселящий” газ) в больших концентрациях вызывает удушье. Монооксид азота NO – нервный яд; подобно СО он способен присоединяться к гемоглобину крови, образуя нестойкое нитрозосоединение, которое трансформируется в метгемоглобин, при этом Fe3+ переходит в Fe3+, не способный обратимо связывать кислород. Концентрация метгемоглобина в крови 60-70% считается летальной. Диоксид азота раздражает легкие и слизистые оболочки, в больших концентрациях вызывает отек легких, понижает кровяное давление [5].
Первичное воздействие оксидов азота на организм человека связано с образованием азотной и азотистой кислот при их контакте со слизистыми оболочками. Вторичное действие оксидов азота проявляется в образовании нитритов в крови, что приводит к нарушению сердечной деятельности. Уже при концентрации диоксида азота в атмосфере более 100 мкг/м3 увеличивается число респираторных заболеваний. Вероятно, подобный эффект связан с тем, что NO2 повышает восприимчивость к патогенным агентам, вызывающим эти заболевания. Имеются сведения о влиянии диоксида азота на продолжительность заболеваний [3].
Наряду с углеводородами оксиды азота под действием УФ-излучения вступают в ряд радикальных реакций и участвуют в образовании фотохимического смога, в состав которого входит озон, являющийся сильным раздражителем дыхательных путей. Кроме того, подвергаясь физическим и химическим превращениям в атмосфере, оксиды азота способствуют образованию “кислотных дождей” [5].
В настоящее время государственные стандарты чистоты воздуха отличаются, но все они разработаны с учетом Всемирной организации по вопросам здравоохранения при ООН (ВОЗ). В связи с тем, что вредное воздействие какого-либо вещества на организм человека прямо пропорцио-нально зависит от времени воздействия, нормативы по концентрациям токси-чных соединений относятся к определенным периодам времени. Предельно-допустимые концентрации оксидов азота (ПДК) России представлены в таблице 5.
Таблица 5.
Предельно-допустимые концентрации оксидов азота в России [3].
Вещество |
ПДК, мкг/м3 |
Время воздействия |
Оксид азота |
с. с 60 м. р.400 |
24 ч 20 мин |
Диоксид азота |
с. с.40 м. р.85 |
24 ч 30 мин |
Таким образом, учитывая высокую токсичность и резко отрицательное воздействие оксидов азота на организм человека, важнейшей задачей является обезвреживание промышленных и выхлопных газов с целью сокращения выбросов NOx.
1.2. Методы по сокращению выбросов оксидов азота
Сокращения выбросов токсичных соединений можно достичь с одной стороны – совершенствованием технологических процессов, а с другой – разработкой способов их уничтожения или уменьшения концентрации путем химической переработки в нетоксичные соединения.
К технологическим методам по сокращению выбросов оксидов азота можно отнести следующие методы [6]:
· уменьшение температуры процесса горения топлива (за счет подачи воды или водяного пара в топку, а также снижения подогрева воздуха или рециркуляции дымовых газов);
· снижение концентрации окислителей в горячей смеси путем уменьшения избытка воздуха или применения ступенчатого сжигания;
· нетрадиционные методы сжигания (горение в кипящем слое или каталитическое сжигание).
Химические способы очистки от оксидов азота промышленных и выхлопных газов подразделяются на [6]:
· сорбционные методы поглощения оксидов азота с использованием различных адсорбентов (цеолиты, кокс, водные растворы щелочей);
· окислительные методы, основанные на окислении NO в NO2 с последующим поглощением различными поглотителями;
· восстановительные методы, основанные на восстановлении NO до молекулярного N2. Их реализация возможна как без использования катализаторов (гомогенное селективное восстановление аммиаком), так и с их применением – каталитическое разложение оксидов азота на элементы и реагентное каталитическое восстановление.
Наиболее перспективными и эффективными методами удаления оксидов азота в настоящий момент признаны каталитические методы.
Прямое термическое разложение NOх протекает по реакциям (1-3) при температурах 800–1000°С [18-36]:
2N2O Þ 2N2 + O2
2NO Þ N2 + O2
(3) 2NO2 Þ N2 + 2O2
Наиболее экологически чистым способом очистки отходящих газов от оксидов азота является их разложение на азот и кислород по реакциям (1-3) на твердофазных катализаторах, т. к. этот метод не требует дополнительного введения восстановителя в зону реакции.
Однако в литературе [10-11] отмечается, что применение этого метода на практике весьма проблематично из-за кинетических затруднений, возникающих в реакции конверсии NOх на молекулярный азот и кислород. Тем не менее изучение реакций каталитического разложения NOх представляет большой научный интерес. С точки зрения фундаментального катализа на основе исследования простейшей реакции (2) можно получить данные об предполагаемых стадиях более сложных процессов.
1.3. Каталитическое восстановление оксидов азота в присутствии кислорода и его механизм
Открытие процесса селективного каталитического восстановления NOx в присутствии избытка O2 имело огромное значение с точки зрения доказательства принципиальной возможности восстановления оксидов азота в окислительной атмосфере [113]. В последующее десятилетие количество публикаций, посвященных изучению СКВ NOx, неуклонно росло.
Другие рефераты на тему «Химия»:
- 136 Валидационная оценка методики анализа лекарственной формы состава - натрия хлорида 0,5; натрия ацетата 0,2; воды очищенной до 1 л
- Кинетика окисления сплавов в атмосфере воздуха при высокой температуре
- Получение, свойства и применение амидо-аммониевой соли малеопимаровой кислоты на основе малеинизированной канифоли
- Специфичность фермента амилазы
- Пиролиз углеводородов жидких углеводородных фракций