Кинетика химических реакций
Содержание
1. Формулировка заданий
1.2 Работа 2 - Кинетика химических реакций
1.3 Работа 3 - Поверхностные явления
2. Решение задания 9 первого варианта
2.1 Работа 1
2.2 Работа 2
2.3 Работа 3
3. Исходные данные
1. Формулировка заданий
1.1 Работа 1 - Растворы электролитов
1. Растворы электролитов.
2. Кинетика химических реакций.
3. Поверхностные явления.
Рассчитать температуру замерзания водного раствора дихлоруксусной кислоты при ее концентрации Cm = 1,300, моль / кг если известно, что при ее концентрации С’m = 0,331, моль / кг величина электродного потенциала водородного электрода при 00C и давлении водорода 101,3 кПа составляет E0 = - 0,066 B при расчете принять, что активности кислоты и ионов совпадают с их концентрациями, т.е. Cmi = ai.
Исходные данные находятся в колонках табл.3.1
1.2 Работа 2 - Кинетика химических реакций
Для реакции A + B → D начальные концентрации веществ A и B равны и составляют
С0 (A) = С0 (B) = 1,00, моль / л (табл.3.2). Изменение концентрации веществ (Ci) во времени при различных температурах (Ti) находятся в стороне, соответствующе номеру задания.
Определить энергию активации (E), предэкспоненциальный множитель (K0) и время, за которое 60% веществ A и B (табл.3.2) при температуре T5 = 395 K (табл.3.2) превратится в продукты реакции D.
1.3 Работа 3 - Поверхностные явления
При адсорбции некоторой кислоты из 200 мл водного раствора этой кислоты различных исходных концентраций C0,, i (табл.3.3) на 4 г активированного угля концентрация кислоты уменьшается до значений Ci (табл.3.3).
Установить, каким из уравнений (Лангмюра или Фрейндлиха-Зельдовича) описывается процесс адсорбции в данном случае. Найти постоянные в соответствующем уравнении, а также равновесную концентрацию раствора (C5) при такой же температуре, если исходная концентрация кислоты равна С0,5 = 0,56 моль / л (табл.3.3), а масса адсорбента - 4 г.
2. Решение задания 9 первого варианта
2.1 Работа 1
Рассчитать температуру замерзания водного раствора дихлоруксусной кислоты при ее концентрации Сm = 1,300, моль / кг, если известно, что при ее концентрации
С’m = 0,331, моль / кг величина электродного потенциала водородного электрода при 00С и давлении водорода 101,3 кПа составляет Е0 = - 0,066 В (при расчете полагать, что активности совпадают с концентрациями).
Решение
Дихлоруксусная кислота диссоциирует по уравнению:
CCl2COOH = Н+ + CCl2COO- (1)
Обозначив молекулу кислоты AH, запишем уравнение (1) в форме:
AH = H+ + A- (1’)
Понижение температуры замерзания раствора электролита определяется соотношением:
ΔT3 = i * Kk * Cm, (2)
где i - изотонический коэффициент; Kk - криоскопическая постоянная (для воды равна 1,86 кг * K / моль); Сm - концентрация электролита, моль / кг,
Таким образом, задача сводится к нахождению изотонического коэффициента для раствора кислоты моляльной концентрации Сm = 1,300 моль / кг.
Изотонический коэффициент связан со степенью диссоциации α уравнением:
i = 1 + α (K - 1) (3)
K - число ионов, на которое распадается молекула электролита (для нашей задачи K = 2).
Для раствора слабого электролита "AH" степень диссоциации определяет величину константы диссоциации Kd:
Kd = CH+ * CA - / CAH = Cm * α2/1 - α (4)
где CAH, CH+, CA - равновесные концентрации молекул кислоты и соответствующих ионов. Если известна концентрация ионов водорода СH+ и концентрация кислоты С’m, то по уравнению (4) рассчитываются величины Kd и α.
Концентрация ионов водорода в растворе (CH+) определяет величину электродного потенциала нестандартного водородного электрода.
При PH = 101,3 кПа
Е = (RT / F) lnCH+, (5)
где R - универсальная газовая постоянная, равная 8,31 Дж / моль * К; F - число Фарадея (96487 кул / г - экв). По уравнению (5) рассчитываем концентрацию водорода СH+ в 0,331 моляльном растворе дихлоруксусной кислоты при 00С:
lnСH+ = EF / RT = - 0,066 * 96487/8,31 * 273 = - 6368,142/2268,63 = - 2,807, CH+ = 0,060 г - ион / кг
В соответствии с уравнением (1’) концентрация ионов водорода СH+ равна концентрации анионов СA-; концентрация молекул кислоты САН определяется как разность между исходной концентрацией кислоты С’m и концентрацией ионов водорода:
СH+ = СA - = 0,060 г - ион / кг
CAH =С’m - CH\+ = 0,331 - 0,060 = 0,271 моль / кг.
По уравнению (4) рассчитываем Kd
Kd = CH+ * СA - / СAH = 0,060 * 0,060/0,271 = 1,33 * 10-2.
Полученное значение константы диссоциации слабой кислоты соответствует температуре замерзания чистой воды - 273,15 K; при незначительных изменениях температуры (несколько градусов) можно полагать Kd постоянной.
Рассчитаем по уравнению (4) степень диссоциации для раствора кислоты с концентрацией Сm = 1,300 моль / кг. Для этого решим уравнение (4) относительно α:
Cm * α2 + Kd * α - Kd = 0
1,3 * α2 + 1,33 * 10-2 * α - 1,33 * 10-2 = 0
D = b2 - 4ac = (1,33 * 10-2) 2 + 4 * 1,3 * 1,33 * 10-2 = 0,0693
α = 0,0962 (отрицательный корень, как не имеющий физического смысла выбрасываем).
В соответствии с уравнением (3) изотонический коэффициент
i = 1 + 0,0962 * (2 - 1) = 1,0962
Понижение температуры замерзания по уравнению (2) составит:
ΔТ3 = 1,0962 * 1,86 * 1,3 = 2,651 К.
Итак, температура замерзания 1,300 мольного раствора дихлоруксусной кислоты понизится на 2,651 K по сравнению с чистой водой и составит
Т3 = 273,150 - 2,651 = 270,499 К.
2.2 Работа 2
Для реакции A + B → D начальные концентрации веществ А и В равны и составляют
С0 (A) = C0 (B) = 1,00 моль /л. Изменение концентрации вещества A во времени при различных температурах представлено в табл.2.1
Определить энергию активации и время, за которое 60% вещества A при температуре
Т5 =395 К превратится в продукты реакции D.
Решение
Представим исходные данные в виде таблицы 2.1
Таблица 2.1. Изменение концентрации вещества A во времени при различных температурах
Время, с |
Текущая концентрация СA, моль / л | ||||
0 |
1,00 |
1,00 |
1,00 |
1,00 |
1,00 |
70 |
0,50 |
0,42 |
0,35 |
0,24 |
----- |
136 |
0,30 |
----- |
----- |
----- |
----- |
285 |
0,15 |
----- |
----- |
----- |
----- |
Температура, K |
403 T1 |
406 T2 |
410 T3 |
417 T4 |
395 T5 |