Расчет показателей корреляционного, дисперсионного анализа

Анализ полученных коэффициентов парной корреляции показывает, что зависимая переменная, т.е. прибыль предприятия торговли имеет сильную обратную связь с расходами предприятия на рекламу и продвижение товаров на рынок (0,4≤0,96≤1) и слабую прямую связь с расходами на обучение и повышение квалификации персонала (0,22≤0,4). Мультиколлинеарность отсутствует, т.к. коэффициент пар

ной корреляции равен -0,196, что не превышает значения 0,7-0,8.

3. Проверить гипотезу об отсутствии корреляционной связи между двумя компонентами случайной величины (X,Z):

В предыдущем пункте проверка гипотезы об отсутствии корреляционной связи между расходами предприятия на рекламу и продвижение товаров на рынок и прибылью предприятия была опровергнута, т.к. проверка коэффициентов парной корреляции показывает, что зависимая переменная, т.е. прибыль предприятия торговли имеет сильную обратную связь с расходами предприятия на рекламу и продвижение товаров на рынок (0,4≤0,96≤1).

4. Построить доверительные интервалы для двух парных коэффициентов корреляции при р=0.95 (X,Z;Y,Z)

Полагая доверительную вероятность р = 0,95 т. е. вероятность, с которой гарантируются результаты, равной 0,95, находим соответствующее ей значение критерия Стьюдента t, равное 2,1009. Воспользовавшись формулой средней квадратической ошибки, где вместо р возьмем рассчитанный выборочный коэффициент корреляции r, получим значение для средней квадратической ошибки X,Z: р = 0,95; r = - 0,96

Поскольку tσr= 2,1009 х 0,018 = 0,0388 верхняя и нижняя границы равны соответственно -0,9212 и -0,9988. Другими словами, с вероятностью 0,95 коэффициент корреляции данной совокупности находится в пределах от -0,9212 до -0,9988. Y,Z: р = 0,95; r = 0,216

Поскольку tσr= 2,1009 х 0,22 = 0,47 верхняя и нижняя границы равны соответственно 0,69 и -0,25. Другими словами, с вероятностью 0,95 коэффициент корреляции данной совокупности находится в пределах от -0,25 до 0,69.

6. Рассчитать парные ранговые коэффициенты корреляции Спирмена и Кендалла для двух компонентов многомерной случайной величины (U,Y).

Запишем ранги:

U

48

52

51

47

49

54

46

49

50

46

47

47

52

44

48

52

52

45

№ Z

11

5

6

14

9

1

16

8

7

15

13

12

4

18

10

3

2

17

№ X

15

4

12

11

3

2

10

8

7

13

14

9

1

18

17

5

6

16

 

-4

1

-6

3

6

-1

6

0

0

2

-1

3

3

0

-7

-2

-4

1

16

1

36

9

36

1

36

0

0

4

1

9

9

0

49

4

16

1

Σ= 228

Тогда критерий Спирмена равен:

r = 0,765, это больше табличного значения критерия, значит корреляция достоверно отличается от 0.

Критерий Кендалла:

r = 4*153/(18*17) – 1 = -0,5

Значит между объемом товарооборота предприятия торговли и расходами предприятия на рекламу и продвижение товаров на рынок существует обратная средней тесноты связь.

Y

101

106

66

80

71

80

119

66

84

94

73

59

79

116

103

76

89

66

Z

4

15

1

6

18

16

3

11

12

7

9

10

17

2

8

13

14

5

X

15

4

10

11

1

2

12

8

7

13

14

9

3

17

18

5

6

16

 

-11

11

-9

-5

17

14

-9

3

5

-6

-5

1

14

-15

-10

8

8

-11

121

121

81

25

289

196

81

9

25

36

25

1

196

225

100

64

64

121

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Экономика и экономическая теория»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы