Эконометрика
г) Соответствие ряда остатков нормальному закону распределения проверяем, используем RS-критерий:
= 2,63, где .
Значение нашего RS-критерия для 7 наблюдений практически попадает в интервал [2,67 3,69], (для 10 наблюдений) хотя и этот критерий определён для
выборок более 10 единиц.
д) При помощи теста ранговой корреляции Спирмена определяем отсутствие или наличие гетероскедастичности.
Таблица № 5.
Ранг Х |
Х |
I ei I |
Ранг еi |
Di |
D²i |
Коэффициент ранговой кореляции определяется по формуле: |
1 |
2,5 |
2,60 |
7 |
-6 |
36 | |
2 |
3 |
0,15 |
4 |
-2 |
4 | |
3 |
3,4 |
0,61 |
3 |
0 |
0 | |
4 |
4,1 |
2,44 |
1 |
3 |
9 | |
5 |
5 |
1,65 |
2 |
3 |
9 | |
6 |
6,3 |
0,39 |
5 |
1 |
1 | |
7 |
7 |
1,56 |
6 |
1 |
1 |
Так как абсолютное значение статистики коэффициента ранговой корелляции =0,175 оказалась значительно меньше табличного значения , то гетероскедастичность отсутствует.
Вывод: линейная модель не соответствует всем предпосылкам регрессионного анализа (условиям теоремы Гаусса-Маркова) и, хотя она пригодна для прогнозирования, но возникает вопрос о её значимости.
Доверительные интервалы для параметра b регрессии
Стандартные ошибки для параметров регрессии находим по формулам:
= 0,46,
= 2,18.
Проверим на статистическую значимость коэффициент b модели, для чего рассчитаем t-статистику по формуле . Полученная t-статистика равна -6,742, что по модулю больше табличного значения t = 2,57. Экономически этот параметр интерпретируется так: при изменении дохода потребителей на одну единицу объёмы продаж изменятся на -3,103 ед.
Проверим на статистическую значимость коэффициент a модели, для чего рассчитаем t-статистику по формуле . Полученная t-статистика равна 33,992, что больше табличного значения t = 2,57. Доверительный интервал параметра b определяем по формуле:
;
s = = 1,917,
Доверительный интервал параметра b составляет ; или ( tтабл. = 2.57, Δ = 2,57 · 0,4602 = 1,1827).
Проведённый анализ коэффициентов регрессии говорит о том, что параметры регрессии значимы, кроме того и уравнение регрессии в целом значимо на 1% уровне значимости (cм. выше). Это позволяет использовать построенную нами модель для получения прогнозов.
Точечный и интервальный прогнозы
Вначале находим точечный прогноз для значения х, на 25% превышающего среднее значение = 4,47 ( т.е. при = 5,589), . Тогда стандартная ошибка прогноза составит:
,
tтабл. = 2.57, Δ = 2,57 · 2,18 = 5,604.
Интервальный прогноз для точечного прогноза при = 5,589 () составит: или .
[1] Кристофер Доугерти. Введение в эконометрику. М.: Инфра М, 2001. С. 238.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели