Эконометрика

г) Соответствие ряда остатков нормальному закону распределения проверяем, используем RS-критерий:

= 2,63, где .

Значение нашего RS-критерия для 7 наблюдений практически попадает в интервал [2,67 3,69], (для 10 наблюдений) хотя и этот критерий определён для

выборок более 10 единиц.

д) При помощи теста ранговой корреляции Спирмена определяем отсутствие или наличие гетероскедастичности.

Таблица № 5.

Ранг Х

Х

I ei I

Ранг еi

Di

D²i

Коэффициент ранговой кореляции определяется по формуле:  

1

2,5

2,60

7

-6

36

2

3

0,15

4

-2

4

3

3,4

0,61

3

0

0

4

4,1

2,44

1

3

9

5

5

1,65

2

3

9

6

6,3

0,39

5

1

1

7

7

1,56

6

1

1

Так как абсолютное значение статистики коэффициента ранговой корелляции =0,175 оказалась значительно меньше табличного значения , то гетероскедастичность отсутствует.

Вывод: линейная модель не соответствует всем предпосылкам регрессионного анализа (условиям теоремы Гаусса-Маркова) и, хотя она пригодна для прогнозирования, но возникает вопрос о её значимости.

Доверительные интервалы для параметра b регрессии

Стандартные ошибки для параметров регрессии находим по формулам:

= 0,46,

= 2,18.

Проверим на статистическую значимость коэффициент b модели, для чего рассчитаем t-статистику по формуле . Полученная t-статистика равна -6,742, что по модулю больше табличного значения t = 2,57. Экономически этот параметр интерпретируется так: при изменении дохода потребителей на одну единицу объёмы продаж изменятся на -3,103 ед.

Проверим на статистическую значимость коэффициент a модели, для чего рассчитаем t-статистику по формуле . Полученная t-статистика равна 33,992, что больше табличного значения t = 2,57. Доверительный интервал параметра b определяем по формуле:

;

s = = 1,917,

Доверительный интервал параметра b составляет ; или ( tтабл. = 2.57, Δ = 2,57 · 0,4602 = 1,1827).

Проведённый анализ коэффициентов регрессии говорит о том, что параметры регрессии значимы, кроме того и уравнение регрессии в целом значимо на 1% уровне значимости (cм. выше). Это позволяет использовать построенную нами модель для получения прогнозов.

Точечный и интервальный прогнозы

Вначале находим точечный прогноз для значения х, на 25% превышающего среднее значение = 4,47 ( т.е. при = 5,589), . Тогда стандартная ошибка прогноза составит:

,

tтабл. = 2.57, Δ = 2,57 · 2,18 = 5,604.

Интервальный прогноз для точечного прогноза при = 5,589 () составит: или .

[1] Кристофер Доугерти. Введение в эконометрику. М.: Инфра М, 2001. С. 238.

Страница:  1  2  3 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы