Характеристика анализа временных рядов

Numberofforecasts: Вводится число точек для прогноза.

Startingfromorigin: Вводится положительное число, определяющее с какой точки начинать считать прогнозные значения. Если эта позиция остается не заполненной Minitab начинает считать прогнозные значения, начиная с последней точки исходного временного ряда. Например, если в примере 1 н

еобходимо сделать прогноз валового сбора хлеба на три года вперед, начиная с последнего года, т. е. с 22-го по счету, то в эту позицию вводят число 21 или оставляют незаполненной и программа подсчитает прогноз в точках 22, 23, 24.

Title: Вводится вами заданный заголовок для выводимого графика.

Результат проведенного исследования Minitab выводит в виде графика, на котором показаны исходные данные, аппроксимирующая их линия тренда и рассчитанные прогнозные значения для этого ряда. В качестве оценок точности аппроксимации и вычисленного прогноза Minitab использует следующие три показателя:

MAPE – средняя абсолютная ошибка в процентах (meanabsolutepercentageerrorсреднее относительное отклонение);

MAD – среднее абсолютное отклонение (meanabsolutedeviation);

MSDs2 – среднеквадратическое отклонение (meansquareddeviation). Близко по своей структуре к среднеквадратической ошибке, но не зависит от числа степеней свободы для разных моделей, поэтому может быть использовано для сравнения точности разных моделей.

Вычисляются эти оценки точности следующим образом:

MAPE, где ; MAD ; MSD ;

Определение типа модели для аппроксимации тренда временного ряда – одна из наиболее сложных задач анализа временных рядов. Оценка коэффициентов уравнения тренда осуществляется по методу наименьших квадратов (МНК).

Наиболее часто в экономике при аппроксимации тренда используются следующие виды функций:

линейная , параболическая , степенная ,

экспоненциальная , функция Гомперца , логистическая

.

Пример 1. Рассмотрим динамику валового сбора хлеба и цен на хлеб в России за 1890 –1910 гг., данные представлены в таблице 1.1. Необходимо определить тип модели для аппроксимации имеющихся временных рядов. В качестве критерия оптимальности выбора модели воспользуемся показателем MSD – среднеквадратическим отклонением.

Таблица 1.1

Годы

Валовый сбор хлеба

Цены на хлеб

Годы

Валовый сбор хлеба

Цены на хлеб

1.

1890

100

100

12.

1901

135

101

2.

1891

78

131

13.

1902

183

102

3.

1892

91

148

14.

1903

174

103

4.

1893

130

114

15.

1904

191

104

5.

1894

139

89

16.

1905

165

108

6.

1895

130

84

17.

1906

143

122

7.

1896

139

85

18.

1907

161

155

8.

1897

122

83

19.

1908

165

168

9.

1898

143

108

20.

1909

204

152

10.

1899

161

109

21.

1910

200

133

11.

1900

152

102

 

В статистическом пакете Minitab рассматриваются следующие четыре типа моделей: линейная, квадратическая, экспоненциального роста, логистическая S – кривая. Выполним расчеты по каждой из моделей для обоих временных рядов и представим данные расчетов в таблице 2.

Таблица 1.2

Вид модели

MSD

Валовый сбор хлеба

Цены на хлеб

линейная

296.219

460.058

квадратическая

272.670

258.870

экспоненциального роста

331.586

452.138

логистическая S – кривая

281.557

нет данных

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы