Характеристика анализа временных рядов

для i = 1,…, p

Сезонный индекс для мультипликативной модели вычисляется по другой формуле.

Minitab производит классическую декомпозицию временного ряда, используя мультипликативную или аддитивную модели. С помощью этой процедуры временной ряд разделяется на три составляющие: тренд, сезонные колебания и ошибку

.

Для работы с этим видом анализа необходимо набрать: Stat> TimeSeries> Decomposition. В результате выполнения этой процедуры на мониторе появится следующие диалоговое окно (рисунок 1.4).

Рисунок 1.4 – Вид диалогового окна "Анализ сезонной декомпозиции"

Диалоговое окно включает в себя следующие параметры:

Variable: выбирается столбец, содержащий исходный временной ряд.

SeasonalLength: Длина сезонного цикла. Вводится целое число большее 2.

ModelType: Выбирается тип модели:

мультипликативная модель. Используется, если сезонные колебания зависят от уровня данных. В этом случае предполагается, что если данные увеличиваются, то увеличивается и величина сезонных отклонений. Многие временные ряды соответствуют этой модели. Модель имеет следующий вид

yt = Trend * Seasonal * Error

аддитивная модель имеет следующий вид:

yt = Trend + Seasonal + Error

ModelComponents: Выбор компонентов присутствующих в модели:

– Trend plus seasonal: Отмечается, если исходные данные содержат тренд и сезонную составляющую.

– Seasonal only: Отмечается, если при анализе тренд не учитывается. Если данные содержат тренд, но это не указано, то оценки сезонных индексов могут быть не верными.

Initialseasonalperiod: По умолчанию Minitab считает, что исходные данные начинаются с первого периода – 1. Если исследуются месячные данные, и они начинаются с июня, то тогда указывается 6 месяц.

Generateforecasts: Отмечается, если необходимо сделать прогноз. Прогнозные значения отмечаются на графике красным цветом.

Numberofforecasts: Вводится число прогнозных значений.

Startingfromorigin: Используется аналогично диалогу в анализе тренда.

Title: Можно ввести свое название графика.

Minitab при декомпозиции:

- оценивает линию тренда методом наименьших квадратов;

- удаляет тренд, деля на тренд или вычитая его из временного ряда в зависимости от используемой модели (соответственно мультипликативной или аддитивной);

- сглаживает преобразованные данные, используя метод скользящего среднего с параметром сглаживания равным длине сезонного цикла. Если сезонный цикл четный, то используется двухшаговая процедура сглаживания методом скользящего среднего;

- временной ряд без тренда делится или из него вычитается полученный сглаженный ряд, чтобы получить сезонную компоненту. С помощью полученных значений вычисляются сезонные индексы, которые позволяют оценить влияние сезонных колебаний.

Рассмотрим на примере производства молока процедуру декомпозиции временного ряда (данные представлены в таблице 1.2).

Таблица 1.2 – Производство молока в России за 1992–1996 гг. (тыс. тонн в месяц)

Месяц \ год

1992 г.

1993 г.

1994 г.

1995 г.

1996 г.

январь

2015

1759

1510

1172

1038

февраль

2123

1773

1484

1226

1104

март

2624

2361

1988

1651

1439

апрель

2891

2649

2211

1859

1521

май

3335

3203

2559

2392

1827

июнь

4071

3936

3209

2864

2446

июль

4040

3861

3204

2714

2369

август

3392

3321

2687

2420

2081

сентябрь

2467

2438

2031

1925

1577

октябрь

2092

1760

1506

1338

1081

ноябрь

1494

1299

1050

984

 

декабрь

1562

1345

1054

1020

 

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы