Решение задач о планировании перевозок
Имеются какие-то переменные х = (х1 , х2 , … хn ) и функция этих переменных f(x) = f (х1 , х2 , … хn ), которая носит название целевой функции. Ставится задача: найти экстремум (максимум или минимум) целевой функции f(x) при условии, что переменные x принадлежат некоторой области G:
В
зависимости от вида функции f(x) и области G и различают разделы математического программирования: квадратичное программирование, выпуклое программирование, целочисленное программирование и т.д. Линейное программирование характеризуется тем, что
а) функция f(x) является линейной функцией переменных х1 , х2 , … хn
б) область G определяется системой линейных равенств или неравенств.
Математическая модель любой задачи линейного программирования включает в себя:
· максимум или минимум целевой функции (критерий оптимальности);
· систему ограничений в форме линейных уравнений и неравенств;
· требование неотрицательности переменных.
Пример
В других ситуациях могут возникать задачи с большим количеством переменных, в систему ограничений которых, кроме неравенств, могут входить и равенства. Потому в наиболее общей форме задачу линейного программирования формулируют следующим образом:
(2.4)
(2.5)
(2.6)
Коэффициенты ai,j, bi, cj, j = 1, 2, . , n, i =1, 2, . , m – любые действительные числа (возможно 0).
Итак, решения, удовлетворяющие системе ограничений (2.4) условий задачи и требованиям неотрицательности (2.5), называются допустимыми, а решения, удовлетворяющие одновременно и требованиям минимизации (максимализации) (2.6) целевой функции, - оптимальными.
Выше описанная задача линейного программирования (ЗЛП) представлена в общей форме, но одна и та же (ЗЛП) может быть сформулирована в различных эквивалентных формах. Наиболее важными формами задачи линейного программирования являются каноническая и стандартная.
В канонической форме задача является задачей на максимум (минимум) некоторой линейной функции F, ее система ограничений состоит только из равенств (уравнений). При этом переменные задачи х1, х2, ., хn являются неотрицательными:
(2.7)
(2.8)
(2.9)
К канонической форме можно преобразовать любую задачу линейного программирования.
Правило приведения ЗЛП к каноническому виду:
1. Если в исходной задаче некоторое ограничение (например, первое) было неравенством, то оно преобразуется в равенство, введением в левую часть некоторой неотрицательной переменной, при чем в неравенства «≤» вводится дополнительная не отрицательная переменная со знаком «+»; в случаи неравенства «≥» - со знаком «-»
(2.10)
Вводим переменную .
Тогда неравенство (2.10) запишется в виде:
(2.11)
В каждое из неравенств вводится своя “уравнивающая” переменная, после чего система ограничений становится системой уравнений.
2. Если в исходной задаче некоторая переменная не подчинена условию неотрицательности, то ее заменяют (в целевой функции и во всех ограничениях) разностью неотрицательных переменных
, l - свободный индекс
Транспортная задача в матричной постановке и ее свойства
Данная задача сводится к определению такого плана перевозок некоторого продукта из пунктов его производства в пункты потребления (||xi,j||mxn), который минимизирует целевую функцию
на множестве допустимых планов
при соблюдении условия баланса
Если привести условия транспортной задачи к канонической форме задачи линейного программирования, то матрица задачи будет иметь размерность (m+n)mn. Матрицы систем уравнений в ограничениях имеют ранги, равные соответственно m иn. Однако, если, с одной стороны, просуммировать уравнения по m, а с другой — уравнения по n, то получим одно и то же значение. Из этого следует, что одно из уравнений в системе является линейной комбинацией других. Таким образом, ранг матрицы транспортной задачи равен m+n -1, и ее невырожденный базисный план должен содержать m+n -1 ненулевых компонент.
Процесс решения транспортной задачи удобно оформлять в виде последовательности таблиц. Строки транспортной таблицы соответствуют пунктам производства (в последней клетке каждой строки указан объем запаса продукта ai), а столбцы — пунктам потребления (последняя клетка каждого столбца содержит значение потребности bj). Все клетки таблицы (кроме тех, которые расположены в нижней строке и правом столбце) содержат информацию о перевозке из i-го пункта в j-й: в левом верхнем углу находится цена перевозки единицы продукта, а в правом нижнем — значение объема перевозимого груза для данных пунктов. Клетки, которые содержат нулевые перевозки (xi,j=0), называют свободными, а ненулевые — занятыми (xi,j>0).
C1,1 C1,2 …… C1,n
X1,1 X1,2 …… X1,n A1
C2,1 C2,2 …… C2,n
X2,1 X2,2 …… X2,n A2
…. …. …. …. ….
Cm,1 Cm,2 …… Cm,n
Xm,1 Xm,2 …… Xm,n Am
B1 B2 …. Bn
Построение исходного допустимого плана в транспортной задаче
По аналогии с другими задачами линейного программирования решение транспортной задачи начинается с построения допустимого базисного плана. Наиболее простой способ его нахождения основывается на так называемом методе северо-западного угла. Суть метода состоит в последовательном распределении всех запасов, имеющихся в первом, втором и т. д. пунктах производства, по первому, второму и т. д. пунктам потребления. Каждый шаг распределения сводится к попытке полного исчерпания запасов в очередном пункте производства или к попытке полного удовлетворения потребностей в очередном пункте потребления. На каждом шаге q величины текущих нераспределенных запасов обозначаются аi(q), а текущих неудовлетворенных потребностей — bj(q). Построение допустимого начального плана, согласно методу северо-западного угла, начинается с левого верхнего угла транспортной таблицы, при этом полагаем аi(0)= аi, bj(0)= bj. Для очередной клетки, расположенной в строке i и столбце j, рассматриваются значения нераспределенного запаса в i-ом пункте производства и неудовлетворенной потребности j-ом пункте потребления, из них выбирается минимальное и назначается в качестве объема перевозки между данными пунктами: хi,j=min{аi(q), bj(q)}. После этого значения нераспределенного запаса и неудовлетворенной потребности в соответствующих пунктах уменьшаются на данную величину:
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели