Принятие управленческих решений с использованием моделей выбора оптимальных стратегий в условиях полной неопределенности

Критерий Гермейера [7].

1) Пусть матрица А является матрицей выигрышей игрока А.

2) Даны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Т.о. игрок А находится в ситуации принятия решений в условиях риска

3) Положим l=1 и

=177 height=42 id="Рисунок 20" src="images/referats/9787/image019.png">

(15)

Таким образом, матрица В представляет собой вектор столбец

В=

размера m x 1.

4) Полагаем l1=1. Условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по критерию Гермейера определяем по формуле (3) с учетом (15) и того, что l1=1:

(16)

Если игрок А придерживается стратегии Аi, то вероятность выигрыша aij при этой стратегии и при состоянии природы Пj равна, очевидно, вероятности qj этого состояния природы. Поэтому формула (16) показывает, что показатель эффективности стратегии Аi по критерию Гермейера есть минимальный выигрыш при этой стратегии с учетом его вероятности.

6) Цена игры по критерию Гермейера определяется по формуле (4):

7) Оптимальной стратегией по критерию Гермейера считается стратегия Аk с наибольшим показателем эффективности:

Gk= G

Заметим, что критерий Гермейера можно интерпретировать как критерий Вальда, применимый к игре с матрицей

Критерий Гермейера так же, как и критерий Вальда является критерием крайнего пессимизма игрока А, но, в отличие от критерия Вальда, игрок А, принимая решение с максимальной осмотрительностью, учитывает вероятности состояний природы.

В случае равномерного распределения вероятностей состояний природы: qj=n-1, j=1,…,n, показатель эффективности стратегии Аi, в силу формулы (16), будет равен Gi=n-1aij и , следовательно, критерий Гермейера эквивалентен критерию Вальда, т.е. стратегия, оптимальная по критерию Гермейера, оптимальна и по критерию Вальда, и наоборот.

Критерий произведений [7].

1) Пусть матрицей выигрышей игрока А является матрица А, все элементы которой положительны:

aij>0, i=1,…,m; j=1,…,n.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, и удовлетворяют условию (1).

3) Пусть l=1 и

(17)

Значит матрица В является вектор-столбцом

В=

размера m x 1.

4) Пусть l1=1. Условие (2) выполняется.

5) Показатель эффективности стратегии Аi по критерию произведений в соответствии с формулами (3) и (17) равен

.

6) Цена игры по критерию произведений вычисляется по формуле (4):

7) Оптимальной стратегией по критерию произведений является стратегия Аk с наибольшим показателем эффективности:

Gk=G.

Отметим, что для критерия произведений является существенным положительность всех состояний вероятностей состояний природы и всех выигрышей игрока А.

Максимаксный критерий ( [1].-[7] ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятность состояний неизвестны. Решение принимается в условиях неопределенности.

3) Пусть l=1 и

(18)

Значит, матрица В является вектор- столбцом

Вmx1=

размера m x 1.

4) Коэффициент l1 выбираем равным 1: l1=1. При этом условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по максимаксному критерию обозначим через Мi и определим его по формуле (3) с учетом (18) и того, чтоl1=1:

(19)

Таким образом, показатель эффективности стратегии Аi по максимаксному критерию есть наибольший выигрыш при этой стратегии.

6) Цена игры по максимаксному критерию, обозначаемая нами через М, определяется по формуле (4):

Очевидно, что это есть наибольший элемент матрицы А.

7) Оптимальная стратегия по максимаксному критерию есть стратегия Аk с наибольшим показателем эффективности:

Mk=M.

Из формулы (19) заключаем, что максимаксный критерий является критерием крайнего оптимизма игрока А. Количественно это выражается тем, что l1=1. Этот критерий противоположен критерию Вальда. Игрок А, пользуясь максимаксным критерием, предполагает, что природа П будет находиться в благоприятнейшем для него состоянии, и, как следствие отсюда, ведет себя весьма легкомысленно, с «шапкозакидательским» настроением, поскольку уверен в наибольшем выигрыше. Вместе с тем, в некоторых случаях этим критерием пользуются осознанно, например, когда перед игроком А стоит дилемма: либо получить наибольший выигрыш, либо стать банкротом. Бытовое отражение подобных ситуаций иллюстрируется поговорками: «Пан или пропал», «Кто не рискует, тот не выигрывает» и т.п.

Оптимальная стратегия по максимальному критерию гарантирует игроку А возможность выигрыша, равного максимаксу.

.

Критерий пессимизма-оптимизма Гурвица с показателем оптимизма lÎ[0; 1] ([1] – [7]).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую–либо надежную статистическую информацию.

Таким образом, решение о выборе оптимальной стратегии будет приниматься в условиях неопределенности.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы