Сущность теории игр

ПЛАН

ВВЕДЕНИЕ

1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ИГР

1.1 Основные понятия и критерии теории игр

1.2 Стратегии теории игр

1.2.1 Смешанные стратегии

1.2.2 Мажорирование (доминирование) стратегий

1.3 Игры с природой

2. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ СМЕШАННЫХ СТРАТЕГИЙ

2.1 Постановка задачи

2.2 Описание алгоритма решения

ГЛАВА 3. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ИГР С

ПРИРОДОЙ

3.1 Постановка задачи

3.2 Решение задач игр с природой

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

АННОТАЦИЯ

Тема курсового проекта, представленная в пояснительной записке, звучит как «Теория игр».

Объём данной пояснительной записки к курсовому проекту по дисциплине «Исследование операций» составляет 27 страниц, количество используемых источников 8.

Данная пояснительная записка содержит 3 (два) раздела, содержащих следующую информацию: теоретические основы теории игр, описание стратегий теории игр, а также описание практического применения указанных стратегий в исследовании операций.

ВВЕДЕНИЕ

На практике часто появляется необходимость согласования действий фирм, объединений, министерств и других участников проектов в случаях, когда их интересы не совпадают. В таких ситуациях теория игр позволяет найти лучшее решение для поведения участников, обязанных согласовывать действия при столкновении интересов. Теория игр все шире проникает в практику экономических решений и исследований. Ее можно рассматривать как инструмент, помогающий повысить эффективность плановых и управленческих решений. Это имеет большое значение при решении задач в про­мышленности, сельском хозяйстве, на транспорте, в торговле, особенно при заключении договоров с иностранными партнерами на любых уровнях. Так, можно определить научно обоснованные уровни снижения розничных цен и оптимальный уровень товарных запасов, решать задачи экскурсионного обслуживания и выбора новых линий городского транспорта, задачу планирования порядка организации эксплуатации месторождений полезных ископаемых в стране и др. Классической стала задача выбора участков земли под сельскохозяйственные культуры. Метод теории игр можно применять при выборочных обследованиях конечных совокупностей, при проверке статистических гипотез.

Обычно теорию игр определяют как раздел математики для изучения конфликтных ситуаций. Это значит, что можно выработать оптимальные правила поведения каждой стороны, участвующей в решении конфликтной ситуации.

В экономике, например, оказался недостаточным аппарат математического анализа, занимающийся определением экстремумов функций. Появилась необходимость изучения так называемых оптимальных минимаксных и максиминных решений. Следовательно, теорию игр можно рассматривать как новый раздел оптимизационного подхода, позволяющего решать новые задачи при принятии решений.

1.ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ИГР

1.1 Основные понятия и критерии теории игр

Игра - упрощенная формализованная модель реальной конфликтной ситуации. Математически формализация означает, что выработаны определенные правила действия сторон в процессе игры: варианты действия сторон; исход игры при данном варианте действия; объем информации каждой стороны о поведении все других сторон.

Одну играющую сторону при исследовании операций может представлять коллектив, преследующий некоторую общую цель. Однако разные члены коллектива могут быть по-разному информированы об обстановке проведения игры.

Выигрыш или проигрыш сторон оценивается численно, другие случаи в теории игр не рассматриваются, хотя не всякий выигрыш в действительности можно оценить количественно.

Игрок - одна из сторон в игровой ситуации. Стратегия игрока - его правила действия в каждой из возможных ситуаций игры. Существуют игровые системы управления, если процесс управления в них рассматривается как игра.

Платежная матрица (матрица эффективности, матрица игры) включает все значения выигрышей (в конечной игре). Пусть игрок 1 имеет т стратегий Аi,а игрок 2 – n стратегий Bj . Игра может быть названа игрой т ´ n. Представим матрицу эффективности игры двух лиц с нулевой суммой, сопроводив ее необходимыми обозначениями (табл. 1.1).

Таблица 1.1.

Игрок 2

Игрок 1

В1

В2

Вn

ai

А1

а11

а12

а1n

a1

А2

a21

a22

а2n

a2

Аm

аm1

аm2

аmn

am

bj

b1

b2

bn

 

В данной матрице элементы аij - значения выигрышей игрока 1 - могут означать математическое ожидание выигрыша (среднее зна­чение), если выигрыш является случайной величиной. Величины ai,и bj,– соответственно минимальные значения элементов аij по строкам и максимальные - по столбцам. Их содержательный смысл будет отражен ниже.

В теории игр не существует установившейся классификации видов игр. Однако по определенным критериям некоторые виды можно выделить.

Количество игроков. Если в игре участвуют две стороны, то ее называют игрой двух лиц. Если число сторон больше двух, ее относят к игре п игроков. Наибольший интерес вызывают игры двух лиц. Они и математически более глубоко проработаны, и в практических приложениях имеют наиболее обширную библиографию.

Количество стратегий игры. По этому критерию игры делятся на конечные и бесконечные. В конечной игре каждый из игроков имеет конечное число возможных стратегий. Если хотя бы один из игроков имеет бесконечное число возможных стратегий, игра является бесконечной.

Взаимоотношения сторон. Согласно данному критерию игры делятся на кооперативные, коалиционные и бескоалиционные. Если игроки не имеют права вступать в соглашения, образовывать коалиции, то такая игра относится к бескоалиционным; если игроки могут вступать в соглашения, создавать коалиции - коалиционной. Кооперативная игра - это игра, в которой заранее определены коалиции.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы