Применение математического моделирования в экономике

x1= x11+ x12+у1

x2= x21+ x22+у2

x11= 800- β;

x12= 700- β

x21= 750- β;

x22= 850- β

у1 =300;

у2 =220

а) Вычислите коэффициенты прямых затрат.

б) Вычислите плановый объем валовой продукции отраслей, если план выпуска конечной продукции y1= 350; y2=250 при условии неизменности технологии производства.

x11=800-523=277

x12=700-523=177 <

p>x21=750-523=227

x22=850-523=327

x1=277+177+300=754

x2=227+327+220=774

а) Вычислим коэффициенты прямых затрат:

а11=х11/х1=277/754=0,367

а12=х12/х2=177/774=0,229

а21=х21/х1=227/754=0,301

а22=х22/х2=327/774=0,422

б) Вычислим плановый объем валовой продукции отраслей:

(1-0,367)х1-0,229х2=350 0,633х1-0,229х2=350

-301х1+(1-0,422)х2=250 -0,301х1+0,578х2=250

Выразим из первого уравнения x1:

0,633х1=350+0,229х2

х1=350/0,633+0,229/0,633х2

х1=552,923+0,362х2 –и поставим во второе уравнение

-0,301(552,923+0,362х2)+0,578х2=250

-166,43-0,109х2+0,578х2=250

0,578х2-0,109х2=250+166,43

0,469х2=416,43

х2=416,43/0,469=887,91

х1=552,923+0,362*887,91=552,923+321,423=874,346.

Таким образом, х1=874,346 – плановый объем валовой продукции первой отрасли;

х2=887,91 – плановый объем валовой продукции второй отрасли.

Задание 4. Использование метода теории игр в торговле

1. Объясните смысл элементов платежной таблицы и способы выбора стратегий с позиций крайнего пессимизма, крайнего оптимизма и оптимизма-пессимизма. Рассмотрим проблему уценки неходового товара с целью получения возможно большей выручки от реализации. Предположим, что эластичность спроса в зависимости от цены неизвестна, т.е. неясно, как отреагирует рынок на то или иное снижение цены. Иными словами, нужно принять решение в условиях неопределенности. В таком случае можно использовать методы теории игр. Обозначим А1, А2, …, Аm – стратегии снижения цены на товар на α1%, α2%,…, αm% соответственно. Возьмем достаточно подробный перечень возможных значений эластичности ε1, ε2 ,…, εn. Если выбрать определенную стратегию Аi и знать эластичность товара εj, то, используя еще некоторые, обычно известные величины, можно подсчитать выручку от реализации товара аij. Проделав это для всех Аi и для всех εj, получим платежную таблицу. В таблице представлен подробный перечень различных ситуаций. Для принятия решения можно использовать следующие способы.

Подход с позиции крайнего пессимизма

Он заключается в том, чтобы считать, что при выборе любой стратегии Аi эластичность товара будет самая неблагоприятная и выручка αi будет минимально возможной, т.е.

αi = min (αi1, αi2,…,αim).

Вычислив все величины αi (α1, α2,…,αm), нужно взять наибольшую из них α: α = max (αi).

Та стратегия, которая соответствует числу α, и есть стратегия крайнего пессимизма. Иначе говоря, такая стратегия есть наилучший выбор из плохих ситуаций, и эта стратегия гарантирует, что, как бы ни сложилась действительная ситуация, выручка будет не меньше, чем α.

Подход с позиции крайнего оптимизма

Он заключается в том, чтобы считать, что при выборе любой стратегии Аi эластичность будет наиболее благоприятной и выручка βi наибольшая, т.е.

βi= max (αi1, αi2,…,αim).

Вычислив все βi, нужно взять наибольшую из них: β = max (βi).

Та стратегия, которая соответствует величине β, и есть искомая.

Подход с позиции пессимизма-оптимизма

Рассмотрим величину H = max [(1-)+ ], где

λ – числовой параметр, 01

Предлагается выбирать стратегию, соответствующую величине H.

При λ = 0 Н = max αi= α, и этот подход превращается в подход с позиции крайнего пессимизма. При λ = 1 Н = max βi=β , и этот подход превращается в подход с позиции крайнего оптимизма. Вообще, величина Н при изменении λ от 0 до 1 непрерывно изменяется от α до β, и выбор некоторого промежуточного λ соответствует сочетанию пессимизма и оптимизма при выборе стратегии. Возьмем, например, λ=0,5 и вычислим

,

а затем выберем наибольшее из них

Стратегию, на которой достигается величина γ, будем называть соответствующей подходу с позиции пессимизма-оптимизма.

2. Выберите стратегии с позиций крайнего пессимизма, крайнего оптимизма и оптимизма-пессимизма для следующей платежной таблицы. Укажите соответствующие выигрыши.

А Е

Е1

Е2

Е3

А1

β -490

β -480

620- β

А2

610- β

620- β

630- β

А3

Ι550-βΙ +10

Ι560- βΙ+10

640- β

Для числа β=523 таблица приобретает вид:

А Е

Е1

Е2

Е3

А1

33

43

97

А2

87

97

107

А3

37

47

117

Выберем по каждой строке таблицы минимальное из чисел αi, максимальное βi ,а затем вычислим их полусумму γi.

А Е

Е1

Е2

Е3

αi

βi

γi

А1

33

43

97

33

97

65

А2

87

97

107

87

107

97

А3

37

47

117

37

117

77

Страница:  1  2  3  4 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы