Модель бензоколонки
[Тз(1), Тз(2), Тз(3),…, Тз(Nзi)],
где Nзi -общее число поступивших заявок для i-й случайной реализации.
Оператор 7 является началом цикла обслуживания заявок. Операторы 8, 9, 10 и 11 производят выбор номера канала, который характеризуется наименьшим значением времени освобождения от обслуживания заявки.
Оператор 12 обращается к автономной процедуре обслуживания очередной заявки. На
выходе этой процедуры определяется число обслуженных заявок в выбранном канале Nобс(Jmin).
Оператор 13 служит для расчета суммарного числа обслуженных заявок по рекурсивной формуле
SNобс = SNобс + Nобс.1 + Nобс.2 + Nобс.3.
После окончания цикла случайных реализаций оператор 14 возвращает свойство активного окна форме № 1. Оператор 15 рассчитывает и выводит на экран значение выходной переменной - средней относительной прибыли по формуле
.
Схема алгоритма процедуры формирования заявок показана на рис. 5.
Оператор 1 устанавливает на нуль модельное время Т. Оператор 2 является началом цикла формирования заявок. Оператор 3 обращается к датчику случайных чисел, который вырабатывает возможное значение случайной величины z, равномерно распределенной в интервале (0,1).
Оператор 4 определяет возможное значение случайной величины времени поступления очередной заявки при условии, что среднее время между соседними заявками равно Тз.cp. Оператор 5 проверяет условие окончания процесса формирования заявок.
Оператор 6 подсчитывает число поступивших заявок, помещает время поступления каждой заявки в специальный массив и изменяет модельное время Т.
Схема алгоритма процедуры обслуживания заявок показана на рис. 6.
Оператор 1 обнуляет время ожидания начала обслуживания заявки Tож и присваивает времени начала обслуживания Tн время поступления очередной заявки T3(J3).
Рис.5. Схема алгоритма формирования заявок
Оператор 2 производит проверку занятости канала. Начальное значение времени освобождения канала Ткоj приравнивается нулю в главном модуле в блоке обнуления локальных переменных.
Если канал занят, то оператор 3 определяет время ожидания Tож как разность времени освобождения канала Ткоj и времени поступления заявки T3(J3). Оператор 4 проверяет условие, что время ожидания Тож превышает допустимое Тож.max. Если это условие выполняется, то управление передается на конец процедуры и заявка остается необслуженной.
Оператор 5 служит для коррекций времени начала обслуживания заявки. Оно теперь должно равняться времени освобождения канала Ткоj. Оператор 6 обращается к датчику случайных чисел с равномерным распределением в интервале (0,1), который вырабатывает возможное значение случайной величины z. Оператор 7 определяет возможное значение времени окончания обслуживания заявки Тк.
Оператор 8 проверяет условия окончания периода обслуживания, а оператор 9 фиксирует тот факт, что данный канал будет занят до конца рабочего дня. Оператор 10 увеличивает на единицу число обслуженных заявок в j-м канале и фиксирует время освобождения канала.
Рис. 6. Схема алгоритма процедуры обслуживания заявок
3. ПРИМЕР РЕШЕНИЯ ЗАДАЧИ МОДЕЛИРОВАНИЯ
Рассмотрим пример решения задачи исследования системы массового обслуживания с помощью разработанной алгоритмической модели. Выберем следующие входные параметры:
• среднее время между заявками Тз.ср = 1 ч;
• максимальное время ожидания Тож.max. = 0,25 ч;
• число случайных реализаций Np = 5000.
Варьируемые переменные:
• среднее время обслуживания заявок Тобс.ср = 0,5; 1; 2; 4 ч;
• число каналов обслуживания NK = 1; 2; 3.
Результаты расчетов приведены в табл. 1.
Таблица 1
Nвар |
NK |
Тобс.ср |
Cотн.ср |
1 |
1 |
0,5 |
6,27 |
2 |
2 |
0,5 |
7,12 |
3 |
3 |
0,5 |
5,53 |
4 |
1 |
1 |
4,24 |
5 |
2 |
1 |
5,83 |
6 |
3 |
1 |
4,74 |
7 |
1 |
2 |
2,33 |
8 |
2 |
2 |
3,61 |
9 |
3 |
2 |
2,94 |
10 |
1 |
4 |
0,95 |
11 |
2 |
4 |
1,40 |
12 |
3 |
4 |
0,65 |
Следовательно, при выбранных исходных данных, в частности при среднем времени между соседними заявками, равном 1 ч, наибольшая прибыль достигается при числе каналов NK=2.
Проведенные исследования показали, что оптимальное число каналов зависит от соотношения между величинами среднего времени между соседними заявками и среднего времени обслуживания (рис. 7).
Рис.7. Зависимость оптимального числа каналов nk от параметров Тз.ср и Тобс.ср
4. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
В интегральной среде Visual Basic 5.0 создайте программу «Модель бензоколонки», текст которой приведен ниже. Произведите отладку программы с целью ликвидации формальных ошибок. Произведите проверку программы расчетом. Подставьте те же исходные данные, которые были выбраны в приведенном выше примере. Убедитесь в том, что результаты расчетов практически совпадают. Произведите самостоятельное исследование закономерностей функционирования фирмы с помощью алгоритмической модели. Выберите исходные данные, проведите расчеты и проанализируйте результаты моделирования.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели