Исследование зависимости между объемом производства, капитальными вложениями и выполнением норм выработки
и доверительный интервал для
Доверительные границы для коэффициента корреляции находят путем обратного пересчета величины по форму
ле (3.49):
=
Итак, с вероятностью 0,5% можно утверждать, что коэффициент корреляции в генеральной совокупности содержится в интервале
Г) Построим уравнение регрессии и выполнить исследование множественной модели в полном объеме (см.п.3.2).
Будем искать зависимость объёма производства, капиталовложениями и выполнением норм выработки в виде линейной множественной регрессии.
(3.55)
Объясняющие переменные Х1 и Х2 оказывают совместное одновременное влияние на зависимую переменную У.
Приведем формулы для вычисления по МНК
(3.56)
(3.57)
(3.58)
Используя промежуточные результаты из табл. 3.4 и 3.7, по формулам (3.56), (3.57) и (3.58) вычисляем коэффициенты регрессии:
Итак, в соответствии с (3.55) уравнение регрессии запишем в виде
(3.59)
Подставляя в это уравнение значения и получим , а затем вычислим остатки (см. приложение 1).
Таким образом, если рассматривать зависимость Объёма производства от капиталовложений и от среднего процента выполнения норм, то объем производства в среднем изменится на 1,7209*10000 рублей при условии, что капиталовложения изменится на 1000 рублей при исключении влияния среднего процента выполнения норм. Если исключить влияние капиталовложений, то обьем производства в среднем изменится на 4,3389 *10000 рублей при изменении среднего процента выполнения норм на один процент.
Обратим внимание, что по сравнению с коэффициентом регрессии в уравнении с одной объясняющей переменной данный коэффициент регрессии несколько уменьшился. Это можно объяснить тем, что переменная коррелирует с , в чем мы ещё убедимся при выполнении корреляционного анализа. Поэтому переменная влияет на через , что приводит к ослаблению силы зависимости от .
Коэффициенты регрессии отражают зависимость объёма производства от соответствующей переменной при исключении влияния на зависимую переменную двух других объясняющих переменных.
Стандартизированные коэффициенты регрессий ; вычисляются по формуле:
(3.61)
где - обычный коэффициент регрессии, а и - стандартные отклонения переменных и соответственно.
По формуле (3.61) вычислим стандартизированные коэффициенты регрессии
Уравнение множественной регрессии в стандартизированном масштабе примет вид
(3.62)
где
Для вычисления множественного коэффициента корреляции можно воспользоваться и другой формулой, если вспомнить, что он непосредственно связан с коэффициентом детерминации
(3.65)
Получен очень высокий коэффициент корреляции. Это свидетельствует о том, что зависимость объема производства от капиталовложений и среднего процента выполнения норм очень высокая
Оценим значимость уравнений регрессии
Значимость уравнения регрессии определяется возможностью надежно прогнозировать среднее отклика по заданным значениям факторной переменной. Так как – случайные величины, то полученное уравнение регрессии может существенно отличаться от того «истинного» уравнения, которое соответствует генеральной совокупности.
Для оценки надёжности выборочного уравнения регрессии применяется - критерий Фишера, рассчитываемый по формуле:
(3.37)
(3.38)
Уравнение регрессии считается значимым (т.е., выделенные факторные переменные "хорошо", "надёжно" описывают исследуемую зависимость, если значение
(3.40)
где – табличное значение F-критерия Фишера-Снедекора на уровне значимости при числе степеней свободы и . Критическая точка находится по статистическим таблицам «Критические точки распределения Фишера на %5-ном уровне значимости».
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели