Информационные технологии в эконометрике
Полученные значения статистики позволяют судить о ее распределении и о характеристиках распределения - о математическом ожидании, медиане, квантилях, разбросе, среднем квадратическом отклонении. Значения статистики, построенные по размноженным подвыборкам, не являются независимыми, однако, как мы видели в главе 5 на примере ряда статистик, возникающих в методе наименьших квадратов и в кластер-а
нализе (при обсуждении возможности объединения двух кластеров), при росте объема выборки влияние зависимости может ослабевать и со значениями статистик типа можно обращаться как с независимыми случайными величинами.
Однако и без всякой вероятностно-статистической теории разброс величин дает наглядное представление о том, какую точность может дать рассматриваемая статистическая оценка.
Сам М. Кенуй и его последователи использовали размножение выборок в основном для построения оценок с уменьшенным смещением. А вот Б. Эфрон преложил новый способ размножения выборок, существенно использующий датчики псевдослучайных чисел. А именно, он предложил строить новые выборки, моделируя выборки из эмпирического распределения (см. определения в терминологическом Приложении 1 в конце книги). Другими словами, Б. Эфрон предложил взять конечную совокупность из n элементов исходной выборки и с помощью датчика случайных чисел сформировать из нее любое число размноженных выборок. Процедура, хотя и нереальна без ЭВМ, проста с точки зрения программирования. По сравнению с описанной выше процедурой появляются новые недостатки - неизбежные совпадения элементов размноженных выборок и зависимость от качества датчиков псевдослучайных чисел (см. выше). Однако существует математическая теория, позволяющая (при некоторых предположениях и безграничном росте объема выборки) обосновать процедуры бутстрепа (см. сборник статей [21]).
Есть много способов развития идеи размножения выборок (см., например, статью [22]). Можно по исходной выборке построить эмпирическую функцию распределения, а затем каким-либо образом от кусочно-постоянной функции перейти к непрерывной функции распределения, например, соединив точки отрезками прямых. Другой вариант - перейти к непрерывному распределению, построив непараметрическую оценку плотности. После этого рекомендуется брать размноженные выборки из этого непрерывного распределения (являющегося состоятельной оценкой исходного), непрерывность защитит от совпадений элементов в этих выборках.
Другой вариант построения размноженных выборок - более прямой. Исходные данные не могут быть определены совершенно точно и однозначно. Поэтому предлагается к исходным данным добавлять малые независимые одинаково распределенные погрешности. При таком подходе одновременно соединяем вместе идеи устойчивости (см. главу 10) и бутстрепа. При внимательном анализе многие идеи эконометрики тесно друг с другом связаны (см. статью [22]).
В каких случаях целесообразно применять бутстреп, а в каких - другие эконометрические методы? В период рекламной кампании встречались, в том числе в научно-популярных журналах, утверждения о том, что и для оценивания математического ожидания полезен бутстреп. Как показано в статье [22], это совершенно не так. При росте числа испытаний методом Монте-Карло бутстреп-оценка приближается к классической оценке - среднему арифметическому результатов наблюдений. Другими словами, бутстреп-оценка отличается от классической только шумом псевдослучайных чисел.
Аналогичной является ситуация и в ряде других случаев. Там, где эконометрическая теория хорошо развита, где найдены методы анализа данных, в том или иной смысле близкие к оптимальным, бутстрепу делать нечего. А вот в новых областях со сложными алгоритмами, свойства которых недостаточно ясны, он представляет собой ценный инструмент для изучения ситуации.
Эконометрика в контроллинге
Контроллеру и сотрудничающему с ним эконометрику нужна разнообразная экономическая и управленческая информация, не менее нужны удобные инструменты ее анализа. Следовательно, информационная поддержка контроллинга необходима для успешной работы контроллера. Без современных компьютерных инструментов анализа и управления, основанных на продвинутых эконометрических и экономико-математических методах и моделях, невозможно эффективно принимать управленческие решения. Недаром специалисты по контроллингу большое внимание уделяют проблемам создания, развития и применения компьютерных систем поддержки принятия решений. Высокие статистические технологии и эконометрика - неотъемлемые части любой современной системы поддержки принятия экономических и управленческих решений.
Важная часть эконометрики - применение высоких статистических технологий к анализу конкретных экономических данных. Такие исследования зачастую требуют дополнительной теоретической работы по "доводке" статистических технологий применительно к конкретной ситуации. Большое значение для контроллинга имеют не только общие методы, но и конкретные эконометрические модели, например, вероятностно-статистические модели тех или иных процедур экспертных оценок (глава 12) или эконометрики качества (глава 13), имитационные модели деятельности организации, прогнозирования в условиях риска (глава 14). И конечно, такие конкретные применения, как расчет и прогнозирование индекса инфляции. Сейчас уже многим специалистам ясно, что годовой бухгалтерский баланс предприятия может быть использован для оценки его финансово-хозяйственной деятельности только с привлечением данных об инфляции. Различные области экономической теории и практики в настоящее время еще далеко не согласованы. При оценке и сравнении инвестиционных проектов принято использовать такие характеристики, как чистая текущая стоимость, внутренняя норма доходности, основанные на введении в рассмотрение изменения стоимости денежной единицы во времени (это осуществляется с помощью дисконтирования). А при анализе финансово-хозяйственной деятельности организации на основе данных бухгалтерской отчетности изменение стоимости денежной единицы во времени по традиции не учитывают.
Специалисты по контроллингу должны быть вооружены современными средствами информационной поддержки, в том числе средствами на основе высоких статистических технологий и эконометрики. Очевидно, преподавание должно идти впереди практического применения. Ведь как применять то, чего не знаешь?
Статистические технологии применяют для анализа данных двух принципиально различных типов. Один из них - это результаты измерений (наблюдений, испытаний, анализов, опытов и др.) различных видов, например, результаты управленческого или бухгалтерского учета, данные Госкомстата и др. Короче, речь идет об объективной информации. Другой - это оценки экспертов, на основе своего опыта и интуиции делающих заключения относительно экономических явлений и процессов. Очевидно, это - субъективная информация. В стабильной экономической ситуации, позволяющей рассматривать длинные временные ряды тех или иных экономических величин, полученных в сопоставимых условиях, данные первого типа вполне адекватны. В быстро меняющихся условиях приходятся опираться на экспертные оценки. Такая новейшая часть эконометрики, как статистика нечисловых данных, была создана как ответ на запросы теории и практики экспертных оценок (см. главы 8 и 12).
Другие рефераты на тему «Экономико-математическое моделирование»:
- Статистический анализ страховой деятельности
- Биматричные игры. Поиск равновесных ситуаций
- Программная реализация алгоритмов поиска в глубину и ширину в неориентированных графах
- Пакет программ Майкрософт, как эффективное средство эконометрического анализа
- Эконометрическое моделирование финансового рынка
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели