Информационные технологии в эконометрике

СОДЕРЖАНИЕ

Проблема множественных проверок статистических гипотез. 3

Методы статистических испытаний (Монте-Карло) и датчики псевдослучайных чисел. 25

Методы размножения выборок (бутстреп-методы) 30

Эконометрика в контроллинге. 35

Литература 41

Проблема множественных проверок статистических гипотез

Практика применения эконометрических методов ча

сто выходит за границы классической математико-статистической теории. В качестве примера рассмотрим проверку статистических гипотез.

Базовая теоретическая модель касается проверки одной-единственной статистической гипотезы. На практике же при выполнении того или иного прикладного исследования гипотезы зачастую проверяют неоднократно. При этом, как правило, остается неясным, как влияют результаты предыдущих проверок на характеристики (уровень значимости, мощность) последующих проверок. Есть ли вообще влияние? Как его оценить? Как его учесть при формулировке окончательных выводов?

Изучены лишь некоторые схемы множественных проверок, например, схема последовательного анализа А. Вальда или схема оценивания степени полинома в регрессии путем последовательной проверки адекватности модели (см. главу 5 выше). В таких исключительных постановках удается рассчитать характеристики статистических процедур, включающих множественные проверки статистических гипотез.

Однако в большинстве важных для практики случаев статистические свойства процедур анализа данных, основанных на множественных проверках, остаются пока неизвестными. Примерами являются процедуры нахождения информативных подмножеств признаков (коэффициенты для таких и только таких признаков отличны от 0) в регрессионном анализе или выявления отклонений параметров в автоматизированных системах управления.

В таких системах происходит слежение за большим числом параметров. Резкое изменение значения параметра свидетельствует об изменении режима работы системы, что, как правило, требует управляющего воздействия. Существует теория для определения границ допустимых колебаний одного или фиксированного числа параметров. Например, можно использовать контрольные карты Шухарта или кумулятивных сумм, а также их многомерные аналоги (см. главу 13). В подавляющем большинстве постановок, согласно обычно используемым вероятностным моделям, для каждого параметра, находящемся в стабильном ("налаженном") состоянии, существует хотя и малая, но положительная вероятность того, что его значение выйдет за заданные границы. Тогда система зафиксирует резкое изменение значения параметра ("ложная разладка"). При достаточно большом числе параметров с вероятностью, близкой к 1, будет обнаружено несколько "случайных сбоев", среди которых могут "затеряться" и реальные отказы подсистем. Можно доказать, что при большом числе параметров имеется два крайних случая - независимых (в совокупности) параметров и функционально связанных параметров, а для всех остальных систем вероятность обнаружения резкого отклонения хотя бы у одного параметра лежит между соответствующими вероятностями для этих двух крайних случаев.

Почему трудно изучать статистические процедуры, использующие множественные проверки гипотез? Причина состоит в том, что результаты последовательно проводящихся проверок, как правило, не являются независимыми (в смысле независимости случайных величин). Более того, последовательность проверок зачастую задается исследователем произвольно.

Проблема множественных проверок статистических гипотез - часть более общей проблемы "стыковки" (сопряжения) статистических процедур. Дело в том, что каждая процедура может применяться лишь при некоторых условиях, а в результате применения предыдущих процедур эти условия могут нарушаться. Например, часто рекомендуют перед восстановлением зависимости (регрессионным анализом) разбить данные на однородные группы с помощью какого-либо алгоритма классификации, а затем строить зависимости для каждой из выделенных групп отдельно. Здесь идет речь о "стыковке" алгоритмов классификации и регрессии. Как вытекает из рассмотрений главы 5 выше, попадающие в одну однородную группу результаты наблюдений зависимы и их распределение не является нормальным (гауссовым), поскольку они лежат в ограниченной по некоторым направлениям области, а границы зависят от всей совокупности результатов наблюдений. При этом при росте объема выборки зависимость уменьшается, но ненормальность остается Распределение результатов наблюдений, попавших в одну группу, приближается не к нормальному, а к усеченному нормальному. Следовательно, алгоритмами регрессионного анализа, основанными на "нормальной теории", пользоваться некорректно. Согласно рекомендациям главы 10 целесообразно применять робастную регрессию.

Проблема "стыковки" статистических процедур обсуждается давно. По проблеме "стыковки" был проведен ряд исследований, результаты некоторые из которых упомянуты выше, но сколько-нибудь окончательных результатов получено не было. По нашему мнению, на скорое решение проблемы "стыковки" рассчитывать нельзя. Возможно, она является столь же "вечной", как и проблема выбора между средним арифметическим и медианой как характеристиками "центра" выборки.

В качестве примера обсудим одно интересное исследование по проблеме повторных проверок статистических гипотез - работу С.Г. Корнилова [1].

Как уже отмечалось, теоретическое исследование является весьма сложным, сколько-нибудь интересные результаты удается получить лишь для отдельных постановок. Поэтому вполне естественно, что С.Г. Корнилов применил метод статистического моделирования на ЭВМ. Однако нельзя забывать о проблеме качества псевдослучайных чисел. Достоинства и недостатки различных алгоритмов получения псевдослучайных чисел много лет обсуждаются в различных изданиях (см. ниже).

В работе С.Г. Корнилова хорошо моделируется мышление статистика-прикладника. Видно, насколько мешает устаревшее представление о том, что для проверки гипотез необходимо задавать определенный уровень значимости. Особенно оно мешает, если в дальнейшем понадобятся дальнейшие проверки. Гораздо удобнее использовать "достигаемый уровень значимости", т.е. вероятность того, что статистика критерия покажет большее отклонение от нулевой гипотезы, чем то, что соответствует имеющимся экспериментальным данным (см. терминологическое приложение 1 в конце книги). Если есть желание, можно сравнивать "достигаемый уровень значимости" с заданными значениями 0,05 или 0,01. Так, если "достигаемый уровень значимости" меньше 0,01, то нулевая гипотеза отвергается на уровне значимости 0,01, в противном случае - принимается. Следует рассчитывать "достигаемый уровень значимости" всегда, когда для этого есть вычислительные возможности.

Переход к "достигаемому уровню значимости" может избавить прикладника от еще одной трудности, связанной с использованием непараметрических критериев. Дело в том, что их распределения, как правило, дискретны, поскольку эти критерии используют только ранги наблюдений. Поэтому невозможно построить критерий с заданным номинальным уровнем значимости, реальный уровень значимости может принимать лишь конечное число значений, среди которых, как правило, нет ни 0,05, ни 0,01, ни других популярных номинальных значений.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы