Автоматизированный априорный анализ статистической совокупности в среде MS Excel
В процессе статистического исследования необходимо решить ряд задач.
1. Установить наличие стохастической связи между факторным признаком Х и результативным признаком Y:
а) графическим методом;
б) методом сопоставления параллельных рядов.
2. Установить наличие корреляционной связи
между признаками Х и Yметодом аналитической группировки.
3. Оценить тесноту связи признаков Х и Y на основе:
а) эмпирического корреляционного отношения η;
б) линейного коэффициента корреляции r.
Сравнить значения η и r и сделать вывод о возможности линейной связи между признаками Х и Y.
4. Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа, и рассчитать доверительные интервалы коэффициентов уравнения линейной регрессии.
Построить теоретическую линию регрессии.
Дать экономическую интерпретацию коэффициента регрессии.
Рассчитать коэффициент эластичности и дать его экономическую интерпретацию.
5. Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм. Построить для этого уравнения теоретическую кривую регрессии.
6. Сделать заключение о возможности практического использования в качестве адекватной модели взаимосвязи признаков линейной модели , полученной с использованием инструмента Регрессия.
II. Рабочий файл с результативными таблицами и графиками.
III. Выводы по результатам выполнения лабораторной работы.
Задача 1. Установление наличия стохастической связи между факторным признаком Х и результативным признаком Y:
а) графическим методом.
Вывод: На основе анализа диаграммы рассеяния из Лабораторной работы №1, полученной после удаления аномальных значений, можно сделать вывод, что имеет место стохастическая связь. Предположительный вид связи: линейная прямая.
б) методом сопоставления параллельных рядов.
Вывод: Табл.2.1, полученная путем ранжирования предприятий по возрастанию значения факторного признака Х, показывает, что с увеличением значений факторного признака увеличиваются значения результативного признака, за исключением некоторых отклонений от общей тенденции, что позволяет сделать вывод о том, что связь между этими признаками носит закономерный характер и, следовательно, является статистической.
Задача 2. Установление наличия корреляционной связи между признаками Х и Yметодом аналитической группировки.
Вывод: Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что поскольку закономерно меняется средняя величина Y, то статистическая связь корреляционная.
Задача 3.Оценка тесноты связи признаков Х и Y:
а) на основе эмпирического корреляционного отношения.
Для анализа тесноты связи между факторным и результативным признаками, рассчитывается показатель η - эмпирическое корреляционное отношение, задаваемое формулой
.
Для вычисления η необходимо знать общую дисперсию и межгрупповую дисперсию результативного признака Y - Выпуск продукции.
Результаты выполненных расчетов представляются табл. 2.4 Рабочего файла.
Вывод: Величина η= 0,902765617 является близкой к единице, что свидетельствует о наличии тесной и сильной связи.
б) на основе линейного коэффициента корреляции признаков.
В предположении, что связь между факторным и результативным признаками прямолинейная, для определения тесноты связи на основе линейного коэффициента корреляции r был использован инструмент Корреляция надстройки Пакет анализа.
Результатом работы инструмента Корреляции является табл. 2.5 Рабочего файла.
Вывод: Значение коэффициента корреляции r=0,9138826 лежит в интервале (0,9-0,99), что в соответствии со шкалой Чэддока, говорит о том, что теснота связи весьма высокая.
Так как значение коэффициента корреляции rположительное , то связь между признаками линейная прямая.
Посредством показателя ηизмеряется теснота связи любой формы, а с помощью коэффициента корреляции r– только прямолинейная, следовательно, значения η и r совпадают только при наличии прямолинейной связи. В теории статистики установлено, что если , то гипотезу о прямолинейной связи можно считать подтвержденной.
Вывод: [0,9027656172 – 0,913188262] = 0,018927039≤0,1- гипотезу о прямолинейной связи можно считать подтвержденной.
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа.
Построение регрессионной модели заключается в определении аналитического выражения связи между факторным признаком Xи результативным признаком Y.
Инструмент Регрессия производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии и проверку его адекватности исследуемым фактическим данным.
В результате работы инструмента Регрессия были получены результативные таблицы 2.6 – 2.9 Рабочего файла.
Вывод: Однофакторная линейная регрессионная модель связи факторного и результативного признаков имеет вид y=1,089х-242,9
Доверительные интервалы коэффициентов уравнения регрессии представлены в нижеследующей таблице:
Коэффициенты |
Границы доверительных интервалов | |||
с надежностью Р=0,68 |
с надежностью Р=0,95 | |||
Нижняя |
Верхняя |
Нижняя |
Верхняя | |
а0 |
- |
- |
- |
- |
а1 |
0,93 |
0,96 |
0,90 |
0,97 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели