Автоматизированный априорный анализ статистической совокупности в среде MS Excel
Величина дисперсии генеральной совокупности может быть оценена непосредственно по выборочной дисперсии .
В математической статистике доказано, что при малом числе наблюдений (особенно при n
40-50)для вычисления генеральной дисперсии по выборочной дисперсии следует использовать формулу
.
- для среднегодовой стоимости ОПФ
- для выпуска продукции
При достаточно больших n значение поправочного коэффициента близко к единице (при n=100его значение равно 1,101, а при n=500- 1,002 и т.д.). Поэтому при достаточно больших n можно приближено считать, что обе дисперсии совпадают:
.
Рассчитаем отношениедля двух признаков:
Для первого признака = 0,97, для второго признака =0,97.
Вывод: Степень расхождения между признаками оценивается величиной 0,97, значит расхождение незначительно.
Для нормального распределения справедливо равенство RN=6sN.
В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.
Ожидаемый размах вариации признаков RN:
- для первого признака RN= 6*278,16=1668,96,
- для второго признака RN = 6*331,82=1990,92.
Величинарасхождения между показателями RNиRn:
- для первого признака |RN-Rn|= 1668,96-1150 = 518,96
- для второго признака |RN-Rn| = 1990,92-1380 = 610,92
Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.
Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность
= |-|
определяет ошибку репрезентативности для средней величины признака.
Для среднего значения признака средняя ошибка выборки (ее называют также стандартной ошибкой) выражает среднее квадратическое отклонение sвыборочной средней от математического ожидания M[] генеральной средней .
Для изучаемых признаков средние ошибки выборки даны в табл. 3:
- для признака Среднегодовая стоимость основных производственных фондов
= 50,78,
- для признака Выпуск продукции
= 60,6
Предельная ошибка выборки определяет границы, в пределах которых лежит генеральная средняя . Эти границы задают так называемый доверительный интервал генеральной средней – случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.
Для уровней надежности P=0,954; P=0,997; P=0,683 оценки предельных ошибок выборки даны в табл. 3, табл. 4а и табл. 4б.
Для генеральной средней предельные значения и доверительные интервалы определяются выражениями:
,
Предельные ошибки выборки и ожидаемые границы для генеральных средних представлены в табл. 11.
Таблица 11 Предельные ошибки выборки и ожидаемые границы для генеральных средних
Доверительная вероятность Р |
Коэффициент доверия t |
Предельные ошибки выборки |
Ожидаемые границы для средних | ||
для первого признака |
для второго признака |
для первого признака |
для второго признака | ||
0,683 |
1 |
51,71 |
61,68 |
1548,291651,71 |
1437,321560,68 |
0,954 |
2 |
105,88 |
126,30 |
1494,121705,88 |
1372,701625,30 |
0,997 |
3 |
164,51 |
196,25 |
1435,491764,51 |
1302,751695,25 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели