Автокорреляционная функция. Примеры расчётов

Для исходного ряда имеем:

 

АКФ(…)

n=2 valign=top >

Ошибка АКФ

1

0,896

0,165

-0,165

2

0,822

0,600

-0,600

3

0,712

0,739

-0,739

4

0,592

0,828

-0,828

5

0,483

0,884

-0,884

6

0,372

0,920

-0,920

7

0,261

0,941

-0,941

8

0,150

0,950

-0,950

9

0,062

0,954

-0,954

Очевидно наличие четкого тренда, значимыми являются коэффициенты автокорреляции 1-го и 2-го порядков. Для первой разности

 

АКФ(…)

Ошибка АКФ

1

-0,173

0,372

-0,372

2

-0,090

0,389

-0,389

3

0,353

0,392

-0,392

4

0,240

0,435

-0,435

5

-0,106

0,454

-0,454

6

-0,088

0,457

-0,457

7

0,315

0,460

-0,460

8

-0,136

0,490

-0,490

Автокорреляции уже не видим, остатки распределены как «белый шум».

Заключение

Еще одна полезная технология исследования периодичности состоит в обследовании частной автокорреляционной функции (ЧАКФ), которая представляет собой углубление взгляда обычной автокорреляционной функции.

В частной автокорреляционной функции ликвидируется зависимость между промежуточными наблюдениями. Иными словами, частная автокорреляция на данном лаге похожа на обычную автокорреляцию, исключая то, что при вычислении из нее убирается влияние автокорреляций с меньшими лагами. На лаге 1 (когда нет промежуточных элементов внутри лага), частная автокорреляция равна обычной автокорреляции. Частная автокорреляция дает более «чистую» картину периодических зависимостей.

Как было отмечено ранее, периодическая составляющая для данного лага n может быть удалена взятием разности соответствующего порядка. Это обозначает, что из каждого i-го элемента ряда вычитается (i-n) – й элемент. В пользу таких преобразований имеются доводы. Во-первых, таким образом можно определить скрытые периодические составляющие ряда. Напомним, что автокорреляции на последовательных лагах зависимы. Поэтому удаление некоторых автокорреляций изменит другие автокорреляции, которые, возможно, подавляли их, и сделает некоторые другие сезонные составляющие более заметными. Во-вторых, удаление периодических составляющих делает ряд стационарным, что необходимо для применения некоторых методов анализа.

Литература

1. В.Е. Гмурман «Теория вероятностей и математическая статистика». Москва: Высшая школа, 1979 г.

2. В.Е Гмурман. «Руководство к решению задач по теории вероятностей и математической статистике». Москва: Высшая школа, 1997 г.

3. В.Н. Калинина, В.Ф. Панкин. «Математическая статистика». Москва: Высшая школа, 1994 г.

4. И.П. Мацкевич, Г.П. Свирид, Г.М. Булдык. «Сборник задач и упражнений по высшей математике (Теория вероятностей и математическая статистика)». Высшая школа, 1998 г.

5. Л.К. Тимофеева, Е.И. Суханова, Г.Г. Сафиуллин. «Сборник задач по теории вероятностей и математической статистике».

6. Тимофеева Л.К., Суханова Е.И. «Математика для экономистов». Сборник задач по теории вероятностей и математической статистике. – М.: У «Учебная литература», 1999 г.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы