Методика изучения алгебраических функций в восьмилетней школе

В настоящее время в учебных планах, регламентирующих процесс обучения в общеобразовательных учреждениях, наметилась тенденция к сокращению количества часов, отводимых на изучение дисциплин естественно-математического цикла. Одновременно происходит возрастание требований к качеству приобретаемых учащимися знаний, умений и навыков. В связи с этим, в теории и методике обучения математике обостри

лись многие методические проблемы, в том числе, проблема изучения школьниками функций.

Основная часть самостоятельной работы направлена на рассмотрение вопросов методики изучения в VII-VIII классах школьного курса математики функций, образующих классы, которые обладают общностью аналитического способа задания функций, сходными особенностями графиков, областей применения.

Освоение индивидуально заданной функции происходит в сопоставлении черт, специфических для неё, с общим представлением о функции. Особое внимание уделено методике изучения линейной, квадратичной и кубической функций и их графиков, а также рассматриваются понятия других функций.

Предпосылки развития функциональной содержательно-методической линии в курсе алгебры основной школы

Авторами рассмотрены различные пути решения указанной проблемы. Так, например, разработана методика применения упражнений в процессе обучения математике, предложены критерии по отбору и конструированию упражнений в процессе формирования понятия функции (Г. И. Саранцев); построена система вычислительных упражнений с графическим контролем (В. А. Гуськов); разработана методика формирования и совершенствования графических представлений учащихся (Е. С. Канин); выделены основные этапы формирования начальных функциональных умений учащихся в средней школе, разработана методика повышения уровня сформированности функциональных умений, способствующая укреплению внутрипредметных и межпредметных связей в обучении математике (М. В. Ткачева); предложена методика изучения понятия функции на основе взаимно обратных функций (В. П. Черепков); разработаны некоторые вопросы пропедевтики функциональной зависимости (В. А. Гуськов, М. И. Добровольский, А. И. Жаворонков, Н. Н. Забежанская, А. А. Михеева).

Тем не менее, в соответствующих публикациях неоднократно указывается на низкий уровень сформированности у учащихся функциональных знаний, умений и навыков. Учащиеся поверхностно усваивают понятие функции, ассоциируя его с формулой. Среди причин, этому способствующих, указываются многие факты: отсутствие у школьников интереса к предмету вообще и изучению функций в частности; изучение каждого нового вида функции, свойств функции фактически вне связи с предыдущим; разрыв между вычислительными и функционально-графическими умениями у учащихся.

В условиях реализуемого учителями информационно-объяснительного подхода к обучению понятие функции, свойства функции воспринимаются учащимися формально, не связываются с соответствующими геометрическими образами. Как следствие, учащиеся не могут оперировать изученными понятиями, не могут ответить на достаточно простые вопросы. Между тем правильное и быстрое графическое представление об аналитических объектах и, наоборот, аналитическое задание графических изображений значительно облегчает усвоение многих понятий, развивает математическую интуицию учащихся, является свидетельством развитой математической культуры.

Определение функции

Начиная с XVII в. одним из важнейших понятий является понятие функции. Оно сыграло и поныне играет большую роль в познании реального мира.

Идея функциональной зависимости восходит к древности, она содержится уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами, в первых формулах для нахождения площади и объема тех или иных фигур.

Те вавилонские ученые, которые 4-5 тысяч лет назад нашли для площади S круга радиусом r формулу S=3r2 (грубо приближенную), тем самым установили, пусть и не сознательно, что площадь круга является функцией от его радиуса. Таблицы квадратов и кубов чисел, также применявшиеся вавилонянами, представляют собой задания функции.

Однако явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берут свое начало в XVII в. в связи с проникновением в математику идеи переменных. В “Геометрии” Декарта и в работах Ферма, Ньютона и Лейбница понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых - функции от абсцисс (х); путь и скорость - функции от времени (t) и тому подобное.

Четкого представления понятия функции в XVII в. еще не было, путь к первому такому определению проложил Декарт, который систематически рассматривал в своей “Геометрии” лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Постепенно понятие функции стало отождествляться таким образом с понятием аналитического выражения - формулы.

Слово “функция” (от латинского functio - совершение, выполнение) Лейбниц употреблял с 1673 г. в смысле роли (величина, выполняющая ту или иную функцию). Как термин в нашем смысле выражение “функция от х” стало употребляться Лейбницем и И.Бернулли; начиная с 1698 г. Лейбниц ввел также термины “переменная” и “константа” (постоянная). Для обозначения произвольной функции от х Иоганн Бернулли применял знак j х, называя j характеристикой функции, а также буквы х или e; Лейбниц употреблял х1, х2 вместо современных f1(x), f2(x). Эйлер обозначал через f : х, f : (x + y) то, что мы ныне обозначаем через f(x), f (x + y). Наряду с j Эйлер предлагает пользоваться и буквами F, Y и прочими. Даламбер делает шаг вперед на пути к современным обозначениям, отбрасывая эйлерово двоеточие; он пишет, например, j t, j (t + s).

Явное определение функции было впервые дано в 1718 г. одним из учеников и сотрудников Лейбница, выдающимся швейцарским математиком Иоганном Бернулли: “Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных”.

Леонард Эйлер во “Введении в анализ бесконечных” (1748) примыкает к определению своего учителя И. Бернулли, несколько уточняя его. Определение Л. Эйлера гласит: “Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств”. Так понимали функцию на протяжении почти всего XVIII в. Даламбер, Лагранж и другие видные математики. Что касается Эйлера, то он не всегда придерживался этого определения; в его работах понятие функции подвергалось дальнейшему развитию в соответствии с запросами математической науки. В некоторых своих произведениях Л. Эйлер придает более широкий смысл функции, понимая ее как кривую, начертанную “свободным влечением руки”. В связи с таким взглядом Л. Эйлера на функцию между ним и его современниками, в первую очередь его постоянным соперником, крупным французским математиком Даламбером, возникла большая полемика вокруг вопроса о возможности аналитического выражения произвольной кривой и о том, какое из двух понятий (кривая или формула) следует считать более широким. Так возник знаменитый спор, связанный с исследованием колебаний струны.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы