Методика изучения алгебраических функций в восьмилетней школе

Пример 7. На рисунке изображены графики функций у=х2 и у= —0,5х2. Как относительна них пройдет график функции y=0,5х2; -2х2; Зх2? Это задание не предполагает «точного» построения искомого графика; достаточно лишь указание на область, где он расположен, или его эскизное построение.

Пример 8. На рисунке изображен график функции у=х2+1, пользуясь этим чертежом, изобразить от руки график функци

и у=х2+ 0,3. Проверить правильность сделанного эскиза: вычислить значения функции у = х2 при х=±0,5; ±1,5 и отметить точки графика. Каким преобразованием можно перевести график функции

у=х2-1 в график функции у=х2?

Рис.2.3. График функции у=х2+1

Цель задания — согласовать зрительный образ графика, его геометрические свойства и формулу. График функции у = x2 + 0,3 симметричен относительно оси ординат, значит, рисунок не должен быть скошенным. Его симметричность подчеркивается симметричным расположением «пробных» значений аргумента. Положение точек на чертеже должно выправить распространенную неточность в изображении графиков квадратичных функций: нарисованные от руки ветви параболы, как правило, расположены гораздо шире, чем должны быть. Поэтому пробные точки (их ординаты вычисляются по условию, а не ищутся по чертежу) попадают в полосу между изображенными линиями. То, что графики сближаются по мере удаления от начала координат, требует пояснений, которые можно сделать при обсуждении.

К изучению класса кубических функций привлекается прием, аналогичный изучению квадратичных функций, основанный на использовании геометрических преобразований для построения графика произвольной кубической функции из кубической параболы стандартного положения — графика функции у=ах3, а≠0.

Как и в случае с квадратичной функцией у=х2 видим , что характер изменения значений функции у=х3 неравномерный: на одних участках она растет быстрее, на других — медленнее. Эта особенность выявляется при построении графика, причем целесообразно рассмотреть два графика: один — в крупном масштабе на промежутке,. -1≤x≤1, другой—в мелком масштабе на промежутке, например, -2≤х≤2. Построение можно вести описанным выше методом загущения. Важно отметить свойство кубической параболы - симметричность её графика относительно начала координат.

Далее вводится более широкий класс функций, имеющий вид у=ах3+с. И здесь также коэффициент с получает ясную геометрическую интерпретацию, подойти к которой можно либо явно используя понятие параллельного переноса вдоль оси ординат, либо независимым рассуждением.

Рис.2.4.

Рис.2.5.

Пример 9. Задан график функции у=х3. Построить на этом чертеже график функции у=х3-2.

Здесь также можно поступить по аналогии с рассмотренными примерами при рассмотрении квадратичной функции.

Далее необходимо подвести учащихся к основным свойствам функции y=x3:

Область определения - вся числовая прямая;

y=x3 -нечетная функция;

Функция возрастает на всей числовой прямой.

Методика изучения прямой и обратной пропорциональной зависимости

Введение понятий прямой и обратной пропорциональной зависимости является важным шагом на пути к введению понятия функциональной зависимости и в дальнейшем к изучению линейной и обратной функций. Используя на практике индуктивный подход и знания о пропорции, полученные учениками, преподаватель на нескольких примерах может подвести учеников к пониманию понятий прямой и обратной пропорциональной зависимости.

Например:

«Члены пропорции обладают свойством, которое называют основным свойством пропорции. Во всякой пропорции произведение крайних членов равно произведению средних членов, то есть если a/b=c/d , то a · d = b · c . Это свойство применяется при нахождении неизвестного члена пропорции.

Пусть a/x = c/d , то x = a · d/c.

Посмотрите, как можно использовать знания математики в русском языке!

Именительный падеж - кто? что?

Родительный падеж - кого? чего?

Дательный падеж - кому? X?

Рис.2.6.

Недостающий вопрос дательного падежа - чему?

В окружающем нас мире большое множество пропорций или отношений. Они делятся на две большие группы:

прямо пропорциональные и обратно пропорциональные.

Прямо пропорциональные :

1. Длина пути, пройденная равномерно движущимся телом, и время, затраченное на этот путь.

2. Длина окружности и ее радиус.

3. Длина сторон прямоугольника и его периметр (площадь).

Обратно пропорциональные :

1. Радиус колеса и число совершаемых им оборотов на определенном отрезке пути.

2. Скорость движения и время в пути.

Пропорциональность - такая зависимость между величинами, при которой увеличение одной из них влечет за собой изменение во столько же раз другой величины.

Прямая и обратная пропорциональные зависимости выражаются формулами: y = a · x и y = a/x, (x отличен от нуля), где x и y - переменные величины, а - коэффициент пропорциональности, который и показывает, во сколько раз происходят изменения. а - действительное число отличное от нуля. Эти зависимости можно изобразить графически. »

В качестве закрепления понятий прямой и обратной пропорциональной зависимости преподаватель может дать несколько заданий:

1) Определить, является ли прямой пропорциональной, обратной пропорциональной или не является пропорциональной зависимость между величинами:

а) путем, пройденным автомашиной с постоянной скоростью, и временем ее движения;

б) скоростью движения и временем, если длина пути 120 км;

в) количеством машин и их грузоподъемностью;

г) стоимостью товара, купленной по одной цене, и его количеством;

д) объемом прямоугольного параллелепипеда и высотой, если площадь его основания 15 дм2 ;

е) числом рабочих, выполняющих с одинаковой производительностью труда некоторую работу и временем выполнения работы;

ж) площадью квадрата и длиной его стороны;

з) ростом ребенка и его возрастом.

2) Задача на прямо пропорциональную зависимость:

Расстояние между городами А и В на карте равно 5,6 см, а на местности 420 км.

Какое расстояние между городами С и Д на местности, если на этой же карте расстояние между ними 3,6 см?

3) Задача на обратную пропорциональную зависимость:

28 рабочих могут выполнить строительные работы за 17 дней.

Сколько нужно рабочих, чтобы выполнит те же работы за 14 дней, если производительность труда останется неизменной?

Рассмотренные выше подходы к изучению функций в школе не охватывают все многообразие способов и методов изучения этого понятия. Они лишь являются основными, наиболее разработанными подходами к вопросу об изучении функций в школе, ориентируясь на которые можно разрабатывать новые, специфические методы обучения, которые были бы лишены недостатков вышеперечисленных подходов и были бы следующим шагом в деле обучения математике в школе.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы