Математическое моделирование и расчет систем управления техническими объектами
; y(0),
то его решение имеет вид:
. (14)
Если изображение Y(s) имеет кратные полюсы, то вместо формул (13), (14) записываются более сложные выражения.
2.3 Построение частотных характеристик
Частотные характеристики (6) – амплитудную R(15 height=15 src="images/referats/11786/image085.png">) и фазовую можно получать экспериментальным путем, если удается подавать на вход устойчивого объекта гармонические воздействия различных частот из диапазона существенного для выявления требуемых свойств объекта. Статистические методы непараметрической идентификации (спектральный анализ) позволяют оценить значения частотных характеристик путем обработки временных последовательностей на входе и выходе объекта.
Частотные характеристики можно получить по временным характеристикам с помощью преобразования Фурье.
В том случае, когда исходная информация об объекте представлена в форме дифференциального уравнения (1), частотные характеристики строят расчетным путем.
Рассмотрим переходы от дифференциального уравнения n-порядка (1) и передаточной функции (3) к частотным характеристикам.
Установившиеся реакции линейной системы на гармоническое воздействие единичной амплитудысоответствуют частному решению неоднородного дифференциального уравнения (2). Будем искать частное решение:
,
где R(w), j(w) – амплитуда и фаза, в общем случае зависящие от частоты.
Учтем, что
, ;
, .
Подставим эти соотношения в неоднородное дифференциальное уравнение (2), записанное в операторной форме,
.
После деления обеих частей на ехр{jwt} можно записать:
.
Таким образом, амплитудно-частотная характеристика находится как модуль
,
а фазовая частотная характеристика – как аргумент
j(w) = argW(jw)
комплексной частотной характеристики W(jw).
Одновременно получаем переход от передаточной функции к частотным характеристикам. Комплексная частотная характеристика получается заменой аргумента передаточной функции s на jw:
.
В общем случае s может принимать значения на любом контуре комплексной плоскости.
Вычисление значений частотных характеристик для конкретного s = jw (а в общем случае s = a + jw) сводится к вычислению значений полиномов В(s) и А(s) с последующим делением полученных комплексных чисел. При этом получаются значения вещественной P(w) и мнимой Q(w) частотных характеристик. Значение амплитудной частотной характеристики вычисляется как
.
Трудности возникают при расчете значений фазочастотной характеристики по формуле
; k = 0, … (15)
Значения j(w) получаются на интервале (- p, p), поэтому в случае систем высокого порядка для определения истинных значений фазовых сдвигов принимается предположение о том, что в пределах выбранного шага частот j(w) не изменяется на ± p, т.е. корни полиномов B(s) и A(s) располагаются достаточно далеко от мнимой оси.
Соотношение (15) не определяет аргумент j(w) комплексного числа W(jw), так как ему вместе с j удовлетворяет и j + p. Однако из-за непрерывности фазовой характеристики j(w), принимающей отличные от нуля значения, она однозначно характеризуется текущим tgj(w) = Q(w)/P(w), wmin < w < wmax и начальным j(w0); wmin < w < wmax значениями. На этом свойстве непрерывности фазовой характеристики можно получить алгоритм построения частотных характеристик, если истинное значение j(w0) лежит в пределах (- p, p).
2.4 Построение моделей по системе дифференциальных уравнений
Системы дифференциальных уравнений обычно получаются в результате построения аналитическим методом математических моделей физических систем с сосредоточенными компонентами.
Пусть исходные знания об объекте управления имеют вид некоторой физической системы с сосредоточенными компонентами; это может быть, например, многоконтурная электрическая или механическая схема. На основе соответствующих законов по определенным правилам записываются компонентные уравнения и уравнения связей. Далее эти уравнения можно привести к следующему виду:
i = 1, …, N;(16)
q = 1, …, K.
Уравнения (16) можно записать в матричном виде:
A(p)x(t) = B(p)f(t);
y(t) = C(p)x(t),
где х – вектор внутренних переменных размерности N; f и y – векторы переменных входа и выхода размерностей Р и K соответственно; А(р), В(р), С(p) – полиномиальные матрицы; обычно матрица С – числовая, т. е. состоит из нулей и единиц, указывающих, какие из переменных х принимаются за выходные.
Уравнения (16), (17) называют непричинно-следственными, между внутренними переменными xi(t) нет объективных причинно-следственных отношений.
При определенных условиях систему (16) можно записать в форме системы дифференциальных уравнений первого порядка, разрешенных относительно производных,
i = 1, …, n,
дополненной уравнениями выходов
yq(t) = q = 1, …, K.
Модели в терминах вход-состояние-выход используют понятие состояния. Состояние динамического объекта (с памятью) – необходимая и достаточная информация для определения будущего поведения по дифференциальным уравнениям при заданных входных воздействиях независимо от того, каким путем система пришла в это состояние. Для конечномерных систем состояние представляется как n-мерный вектор n(t); при t = 0 вектор n(0) – начальное состояние. Система дифференциальных уравнений первого порядка в так называемой нормальной форме пространства состояний (стандартизованной векторно-матричной форме) записывается следующим образом:
An + Bf, n(0);
(18)
y = Cn + Df,
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах