Математическое моделирование и расчет систем управления техническими объектами

В этих примерах разделены динамическая линейная часть и безынерционная нелинейность: нелинейные эффекты сосредоточены в безынерционном, а динамические – в линейном элементах.

4. Примеры математических моделей объектов горной электромеханики

Модель асинхронного электропривода резания угледобывающего комбайна

Уравнение моментов:

где

Jэд – момент инерции ротора и приведенных к нему вращающихся частей; w – угловая частота тока в сети; s – скольжение двигателя; p – число пар полюсов электродвигателя; Qт – теоретическая производительность гидронасоса; Pо – давление в гидросистеме; wн – угловая скорость насоса (равная угловой скорости электродвигателя); Мо – момент резания при толщине срезаемой стружки h = 0; а¢ – коэффициент, зависящий от крепости разрушаемого угля.

Скольжение двигателя для устойчивой части механической характеристики приближенно можно определить по формуле

где sк, Мк – соответственно критическое скольжение и критический момент электродвигателя.

Окончательно получим

где

;

Модель системы регулирования нагрузки на электропривод угледобывающего комбайна в зависимости от скорости подачи

Уравнение относительно момента сил сопротивления резанию в направлении подачи имеет вид:

где t – время пробега резцом расстояния между соседними резцами одной линии резания; – скорость подачи резца.

Модель управления скоростью вращения вала электродвигателя постоянного тока шахтной подъемной установки

Уравнение относительно скорости вращения W:

где Тэд = L/R – электромагнитная постоянная двигателя; Тм = JR/cecм – электромеханическая постоянная двигателя; kд = 1/сe – коэффициент усиления двигателя по управляющему воздействию; = R/cecм – коэффициент усиления двигателя по нагрузке; Uвх – напряжение якоря электродвигателя; W – частота вращения ротора; Мс – момент нагрузки на валу электродвигателя.

Передаточная функция по нагрузке (возмущению):

Заключение

Достоверную математическую модель объекта можно найти аналитическим путем. Для этого необходимо располагать всесторонними сведениями об объекте (конструкции, законах, описывающих протекающие в нем процессы, условиях функционирования и взаимодействия со средой). Однако часто из-за отсутствия достаточных данных получить решение задачи таким путем не удается. Трудности применения аналитических методов возникают и при описании реальных объектов, процессы в которых имеют сложный характер. Поэтому в подобных случаях эти методы дополняются экспериментальными исследованиями. Преимуществом моделей, полученных теоретическим путем, как правило, является их достаточно общий вид, позволяющий рассматривать поведение объектов в различных возможных режимах.

С практической точки зрения, более привлекательны экспериментальные методы, позволяющие находить модели объектов по результатам измерения их входных и выходных переменных. Хотя эти методы также предполагают наличие априорных сведений об изучаемом объекте, но их характер может быть не столь обстоятельным. Как правило, уровень априорных сведений должен быть достаточным лишь для выбора структуры модели и условий проведения эксперимента. Построение моделей объектов на основе такого подхода обычно называют идентификацией.

Рекомендательный библиографический список

Алексеев А.А. Теория управления: Учебное пособие / А.А.Алексеев, Д.Х.Имаев, Н.Н.Кузьмин, В.Б.Яковлев; СПбГЭТУ, СПб, 1999. 435с.

Борисов Б.М., Математические модели и расчет систем управления техническими объектами: Учебное пособие / Б.М.Борисов, Н.В.Пальянова, В.И.Экгардт; СПГГИ, СПб, 1999. 45с.

Наладка средств автоматизации и автоматических систем регулирования: Справочник // Под редакцией А.С.Клюева. М.: Энергоатомиздат, 1989. 368с.

Толпежников Л.И. Автоматическое управление процессами шахт и рудников: Учебник для вузов. М.: Недра, 1985. 352с.

Содержание

Введение

1. Математическое моделирование систем управления

1.1 Операторы преобразования переменных

1.2 Классы моделей

1.3 Способы построения моделей

1.4 Особенности структурных моделей систем управления

2. Линейные модели и характеристики систем управления

2.1 Модели вход-выход

2.2 Построение временных характеристик

2.3 Построение частотных характеристик

2.4 Построение моделей по системе дифференциальных уравнений

2.5 Построение моделей вход-выход по уравнениям в форме пространства состояний

2.6 Модели систем управления с раскрытой причинно-следственной структурой

2.7 Типовые звенья автоматических систем управления

2.8 Характеристики систем с типовой структурой

2.9 Неопределенность моделей систем управления

3. Нелинейные элементы систем управления

3.1 Безынерционные нелинейные элементы

3.2 Динамические нелинейные элементы

3.3 Нелинейные модели с раскрытой структурой

4. Примеры математических моделей объектов горной электромеханики

Заключение

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы