Математическое моделирование и расчет систем управления техническими объектами
Выражая напряжения и через :
; ,
получим дифференциальное уравне
ние второго порядка
.
Рассмотрим механическую систему (рис.2, в). Пассивными двухполюсниками механических схем являются механическое сопротивление В, масса М и упругость K, описываемые следующими уравнениями для сил f и перемещений x или скоростей v:
;
;
.
Идеальными источниками механической энергии являются источник скорости и источник силы. Уравнения связей механических двухполюсников выражают условия равновесия сил и непрерывности перемещений (скоростей). В соответствии с приведенными ранее уравнениями механических двухполюсников и уравнениями связей записывают дифференциальное уравнение для перемещений:
.
В этом однородном уравнении отсутствует правая часть, описывающая внешнее воздействие на механическую систему, т. е. она автономна. Свободные движения автономной системы являются следствием ненулевых начальных условий, например начального смещения х(0) от равновесного состояния.
При моделировании объектов различной природы – электрической, механической поступательной и вращательной, гидравлической или пневматической и др., а также смешанной природы, например электромеханической (двигатели, генераторы), могут быть выделены аналогичные пассивные и активные компоненты. Дальнейшей абстракцией при построении моделей физических объектов с сосредоточенными компонентами является полюсный граф. Эти универсальные топологические модели позволяют унифицировать составление уравнений. Специфика предметной области проявляется только на этапе построения схемы и полюсного графа, а также на заключительном этапе интерпретации результатов анализа и синтеза.
Рис.3. Схема экспериментального исследования объекта
При проектировании систем управления, когда некоторые элементы реально не существуют, аналитический метод построения моделей оказывается единственно возможным.
Если свойства объекта познаны в недостаточной степени, либо происходящие явления слишком сложны для аналитического описания, для построения математических моделей реально существующих объектов применяется экспериментальный способ, который заключается в активных экспериментах над объектом или в пассивной регистрации его поведения в режиме нормальной эксплуатации (рис.3, а). В результате обработки данных наблюдений получают модели в требуемой форме. Совокупность этих операций объединяется термином идентификация объекта. В результате идентификации получаются модели вход-выход (рис.3, б). Модель зависит не только от свойств объекта, но также от входных сигналов, их разнообразия.
Практически об идентифицируемом объекте всегда имеется какая-то априорная информация, т. е. он не является «черным ящиком». Это дает возможность комбинировать оба способа – вначале аналитически строить структуру модели и определять начальные приближенные значения параметров, а далее обработкой экспериментальных данных уточнять их значения.
1.4. Особенности структурных моделей систем управления
Особенностью математических моделей систем управления является то, что они не только содержат априорную информацию о ее динамических свойствах, необходимую для изучения поведения системы в целом, но также отражают процессы получения и обработки текущей информации о цели системы, состоянии объекта и воздействиях среды для принятия решения по оказанию на объект надлежащего управляющего воздействия. Поскольку модели элементов и систем являются основным материалом в задачах анализа и синтеза (исходными данными и результатами), то им и алгоритмам их преобразования в теории управления отводят важное место.
Понятие модели системы управления неотделимо от понятия структуры. Под структурой систем управления понимают причинно-следственные взаимосвязи элементов (подсистем) направленного действия. Именно ориентированность элементов и их взаимосвязей отличает модели систем управления от структурных моделей физических систем.
При построении моделей с раскрытой причинно-следственной структурой объект или систему предварительно расчленяют на элементы направленного действия и рассматривают их как преобразователи сигналов. Элементы выделяются, как правило, по функциональному признаку, причем сами эти функции понимаются в контексте операций управления: объект управления; измерительные, преобразовательные и усилительные элементы; управляющее устройство; исполнительный механизм; управляющий орган. Далее для каждой части строится своя модель, а затем модели частей связывают между собой таким же образом, как соединялись сами части.
Если части системы образуют контуры, то моделирование по частям встречается с принципиальной проблемой: не зная свойств частей, нельзя описать сигналы на их входах; не зная сигналов, нельзя правильно идентифицировать отдельные части. Достоинство моделирования по частям заключается в наглядности механизма преобразования входов в выходы.
2. Линейные модели и характеристики систем управления
2.1 Модели вход-выход
Основными формами представления конечномерных линейных непрерывных стационарных детерминированных операторов преобразования входных переменных f(t) в переменные выхода y(t) являются: дифференциальные уравнения, передаточные функции, временные и частотные характеристики. Для одномерных систем переменные f(t) и y(t) являются скалярами. Эти и некоторые другие представления операторов рассматриваемого класса моделей могут быть приняты за основу задания динамических свойств в терминах вход-выход. Если для конкретных исследований та или иная форма оказывается более предпочтительной, ставится и решается задача перехода от одной формы к другой, например задача построения временных и частотных характеристик по дифференциальному уравнению или передаточной функции.
Обыкновенное линейное дифференциальное уравнение n-порядка с постоянными коэффициентами обычно записывается так:
(1)
Если ввести оператор дифференцирования по времени , то уравнение (1) запишется в компактном виде:
A(p)y(t) = B(p)f(t), (2)
где A(p) = anpn + …… + a1p + a0; B(p) = bmpm + …… + b1p + b0 – операторные полиномы. Дифференциальное уравнение дополняется начальными условиями .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах