Изучение вопросов биотехнологии в курсе химии средней школы
Биотехнология рекомбинантных ДНК
Технология рекомбинантных ДНК включает набор, как новых методов, так и заимствованных из других дисциплин, в частности из генетики микроорганизмов. Эти методы существенно расширяют возможности генетических исследований. К наиболее важным методам биотехнологии рекомбинантных ДНК следует отнести следующие:
1. Специфическое расщепление ДНК рестрикцирующим
и нуклеазами, что в значительной степени ускоряет выделение различных генов и манипуляции с ними.
2. Быстрое секвенирование всех нуклеотидов в очищенном фрагменте ДНК, позволяющее определить точные границы гена и кодируемую им аминокислотную последовательность полипептида.
3. Гибридизация нуклеиновых кислот, позволяющая с большой точностью выявить специфические нуклеотидные последовательности на основе их способности связывать комплементарные основания.
4. Клонирование ДНК, суть которого сводится к введению ДНК-фрагмента в самореплицирующийся генетический аппарат (плазмиду или вирус), который используют для трансформации бактерий. Бактериальная клетка после трансформации способна воспроизводить этот фрагмент во многих миллионах идентичных копий.
5. Генетическая инженерия, позволяющая получать модифицированные версии генов (сайт-спецефический мутагенез и т.д.) и затем внедрять их в клетки или организмы.
Расщепление ДНК в специфических участках нуклеотидных последовательностей осуществляется особыми ферментами – рестрикцирующими нуклеазами, способными разрушить чужеродную ДНК. Каждый фермент, способный разрушить чужеродную ДНК, опознает в ней специфическую последовательность из 4–6 нуклеотидов (сайт узнавания). Соответствующие последовательности в геноме бактерий замаскированы метилированием остатков с помощью метилаз.
Для успешного решения задач генетической инженерии очень важно быстро секвенировать (определять последовательность нуклеотидов) любых очищенных фрагментов ДНК[8]. В середине 70-х г. в этой области произошел решительный перелом, связанный с открытием рестриктаз и усовершенствованием метода гель-электрофореза, когда стало возможным разделять достаточно протяженные фрагменты ДНК, отличающиеся размером всего на один нуклеотид. С помощью рестриктаз ДНК стали разрезать на определенные блоки и определять в них позиции нуклеотидов химическими (А. Максам и У. Гилберт 1976) или энзиматическими (Сангер и Коулсон 1975) методами.
Важнейший метод получения рекомбинантных ДНК основан на способности нуклеиновых кислот быстро восстанавливать свою структуру после нагревания до 100ºС в сильно щелочной среде (рН 13) [9]. При нагревании до 100ºС комплементарные пары оснований разрушаются, и ДНК диссоциирует на две раздельные цепи. Этот процесс назван денатурацией ДНК («плавлением»). Выдерживание комплементарных цепей при температуре 65ºС приводит к их спариванию и восстановлению структуры двойной спирали (гибридизация, ренатурация, или «отжиг»).
Обмен генами, а также введение в клетку гена другого вида организма осуществляют посредством генетической рекомбинации in vitro.
Для эффективного введения (трансформации) необходимо иметь достаточное число копий нуклеотидных последовательностей.
Полимеразная цепная реакция (ПЦР) – это метод амплификации фрагментов нуклеиновых кислот in vitro, с помощью которого можно достаточно быстро (в течение нескольких часов) получить миллионы копий определенных нуклеотидных последовательностей (генов) [9]. Метод был предложен в 1985 г. К. Мюллисом (биотехнологическая корпорация «Cetus», США) и получил широкое распространение в 1988 г., когда Р. Сайки с соавт. была опубликована основополагающая работа по теории ПЦР и её оптимизации. Метод ПЦР, названный «изобретением века» и очень скоро, в 1993 г., отмеченный Нобелевской премией, ускорил реализацию программы «Геном человека», а также способствовал внедрению в практику клинической диагностики многих заболеваний высокоэффективных диагностических наборов нового поколения.
В методе ПЦР для амплификации фрагментов ДНК используют термоустойчивую ДНК-полимеразу из термофильной бактерии Thermus aquaticus (Taq-полимеразу), которая в присутствии всех 4 видов дезоксирибонуклеозидтрифосфатов и коротких 20–30-членных затравок (праймеров) осуществляет синтез комплементарных последовательностей ДНК. ПЦР имеет циклический, включающих нагревание и охлаждение проб, и цепной характер, так как синтезированные фрагменты ДНК в дальнейшем сами служат матрицей, на которой идет синтез. Повторяя циклы амплификации 30–40 раз, за 1,5 – 3 ч получают миллионы копий фрагментов ДНК.
Лигазная цепная реакция проводится по принципу, аналогичному ПЦР, но вместо Taq-полимеразы и dNTP используется термостабильная ДНК-лигаза и 4 специфических олигонуклеотида, добавляемых в реакционную смесь в избытке. Каждые 2 олигонуклеотида комплементарны к амплифицируемому фрагменту ДНК-матрицы и непосредственно примыкают друг к другу; одновременно они комплементарны и другой паре олигонуклеотидов.
NASBA-метод (Nucleic Acid Sequence – Base Amplification), разработанный в последние годы, является наиболее универсальным методом амплификации как ДНК, так и РНК. Этот метод, в отличие от ПЦР, является изотермальным и осуществляется при 41ºС. Основными компонентами NASBA-системы являются РНК-полимераза фага Т7, РНКаза Н (гидролизует РНК в составе гибрида РНК:ДНК, но не атакует свободную ДНК) и обратная транскриптаза вируса птичьего миелобластоза. В систему входят также нуклеозидтрифосфаты и два специфических праймера, один из которых содержит участок, представляющий собой последовательность (промотор), распознаваемую РНК-полимеразой.
Один из важных этапов конструирования молекулы ДНК – лигирование (или сшивание) генов с помощью фермента ДНК – лигазы. Сшивание фрагментов ДНК, содержащих нужные гены, осуществляют двумя основными методами: а) по «липким» концам; б) с помощью искусственно достроенных «липких» концов.
Сшивание генов (фрагментов) (рис. 1) ДНК по «липким» концам, т.е. взаимнокомплементарным участкам, длиной из 4–6 пар нуклеотидов, достаточно легко осуществляется ферментом ДНК-лигазой с образованием ковалентной фосфодиэфирной связи между соседними нуклеотидами:
– – А Т Г Ц А А Т Т Ц А Г Т Ц – – – – – –
Т А Ц Г Т Т А А Г Т Ц А Г – – – – – –
Сшивание ДНК-лигаза
А Т Г Ц А А Т Т – Ц А Г Т Ц
Т А Ц Г – Т Т А А – Г Т Ц А Г
Рис. 1. Сшивание генов
При отсутствии комплементарных «липких» концов у сшиваемых фрагментов их достраивают, т.е. синтезируют искусственно ферментативным путем (коннекторный метод получения гибридных молекул ДНК), используя концевую (терминальную) дезоксинуклеотидилтрансферазу из тимуса теленка или поли(А) – полимеразу E.coli.
Также, для стыковки фрагментов применяют так называемые линкеры (рис. 2) (или «переходники») – короткие участки ДНК, имеющие разные «липкие» концы:
Другие рефераты на тему «Педагогика»:
- Воспитание жизнеспособности школьников
- Компьютерный практикум для 10 класса с использованием мультимедийного курса "Открытая физика". Методические разработки по теме "Электричество и магнетизм"
- Изучение уровня профессионального самоопределения личности в 8-9 классах
- Система профессиональной подготовки социального работника
- Роль дистанционного обучения в организации самостоятельной когнитивной деятельности учащихся
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения