Расчет вращающейся печи для спекания боксита производительностью по спеку

Вращающиеся печи глиноземного производства работают в режиме противотока. Максимальную температуру и газы, и материал имеют со стороны топливной камеры, а минимальную - со стороны загрузочной камеры.

Температурный режим работы вращающихся печей не изменяется во времени, индивидуален для каждого вида технологического процесса и в значительной мере определяется химическим и фракционным состав

ом перерабатываемых материалов. Обычно его устанавливают опытным путем и организуют таким образом, чтобы в печи строго соблюдался график нагрева шихты, соответствующий технологии данного процесса.

Рассмотрим температурный режим процесса спекания бокситов. Все рабочее пространство вращающейся печи можно условно разделить на четыре зоны, в которых происходят определенные изменения обрабатываемой шихты.

Первая зона, которую называют зоной сушки и обезвоживания, находится в верхней части печи со стороны загрузки шихты. Вначале из шихты испаряется внешняя влага, и температура материала при этом остается практически неизменной близкой к 100 °С. Затем температура высушенной шихты возрастает до 600 °С. Движущиеся навстречу ей газы охлаждаются от 1100 до 240 °С.

Во второй зоне, называемой зоны кальцинации, температура шихты продолжает расти и достигает 1000 °С. В этой зоне происходит полное разложение карбоната кальция, требующее затрат теплоты, поэтому температура газов снижается с 1300 до 1100 °С.

Третья зона - зона спекания - характеризуется максимальными значениями температур как шихты (1000 .1200 °С), так и газов (1350 .1450 °С), так как именно здесь происходит горение факела. В третьей зоне полностью разлагается Na2CО3 и завершается процесс спекания.

Четвертая зона - зона охлаждения - располагается за срезом заглубленного в печь топливосжигающего устройства, т.е. за горящим факелом. Благодаря потоку идущего из холодильника воздуха, имеющего температуру 150 .300°С, обеспечивается охлаждение спека до температуры 1000°С, что резко увеличивает его механическую прочность (по сравнению с размягченным состоянием), необходимую для перегрузки в расположенный в низу холодильник.

Нужно учитывать, что качество готового продукта, получаемого во вращающихся печах, определяется не только кинетикой, но и движением материала, т.е. временем его пребывания в печи. В зависимости от того, насколько мгновенные скорости отдельных частиц отличаются от средней скорости движения материала (при постоянном распределении температуры по длине печи), изменяется степень превращения каждой частицы и, следовательно, фазовый состав глинозема. Наличие в печи частиц с различными скоростями движения и неопределенность соотношения таких частиц из-за технологических возмущений, нарушающий установившийся режим, затрудняют надежный контроль и регулирование тепловой работы печей. В то же время одной из главных задач оперативного управления является поддержание всех параметров на заданном уровне, что возможно только при своевременной и непрерывной информации о качестве целевого продукта.

1. Исходные данные для расчета

Заданная производительность печи G=16 т/час. Состав обрабатываемого боксита приведен в табл. 1. Влажность боксита составляет 10 %. Состав используемого в процессе спекания известняка приведен в табл. 2. Содержание Na2CO3 в соде составляет 98 %. Содержание Al2O3 в товарном глиноземе равно 98,8 %. Товарный выход глинозема из боксита составляет 80 %.

Таблица 1.

Состав боксита, %

Al2O3

SiO2

Fe2O3

CaO

TiO2

П.П.П.

Прочие

51,9

4,2

23,0

4,0

1,7

14,4

0,8

П.П.П. – потери при прокаливании

Таблица 2.

Состав известняка, %

CaO

SiO2

П.П.П.

прочие

51,1

1,7

46,1

1,1

Таблица 3.

Химический состав природного газа, %

CH4с.г.

C2H6с.г.

C3H8с.г.

C4H10с.г.

N2с.г.

CO2с.г.

94,7

1,2

0,5

0,3

2,9

0,4

Влагосодержание 1м3 сухого газа равно gс.г.=10,3 г/м3.

Подогрев воздуха, подаваемого на горение, осуществляют в барабанном или рекуперативном холодильнике (выбрать самостоятельно). Температура подогрева воздуха tв=200˚С и коэффициент избытка воздуха α=1,08.

2. Расчет минералогического состава боксита

В соответствии с данными минералогических исследований сухого боксита можно принять:

· Al2O3 содержится в бемите и диаспоре в виде Al2O3, а также в каолините в виде Al2O3×2SiO2×2H2O;

· Кремнезем SiO2 находится в каолините (80%) и кварце;

· Железо находится в гематите Fe2O3 и гидрогематите Fe2O3×H2O;

· Титан содержится в рутиле TiO2;

· Оксид кальция CaO в известняке CaСO3.

Количество каолинита можно рассчитать по содержанию в нем кремнезема. Общее количество кремнезема в 100 кг боксита равно 4,2 кг. (см. табл. 1.), причем 80% его содержится в каолините, т.е. 4,2×0,8=3,36 кг.

Дальнейшие расчеты необходимо вести, используя массовые соотношения отдельных компонентов в каолините Al2O3×2SiO2×2H2O. Справочные данные по атомным массам некоторых химических элементов сведены в табл. 4.

Таблица 4.

Атомные массы некоторых химических элементов

Химический элемент

Атомная масса

Химический элемент

Атомная масса

Химический элемент

Атомная масса

Водород

Кислород

Углерод

Натрий

1

12

16

23

Алюминий

Кремний

Фосфор

Сера

27

28

31

32

Калий

Кальций

Титан

Железо

39

40

48

56

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы