Усилители постоянного тока и операционные усилители

Каждый экземпляр усилителя может иметь индивидуальное выходное напряжение (при Uвх нач = 0), отличающееся от нормативного. Это отклонение называют напряжением смещения нуля. Объяснение такому наименованию следует искать в операционных усилителях – наиболее массовом типе УПТ. У них за начальный уровень входного сигнала принято напряжение, равное нулю, а соответствующее выход

ное при двуполярном симметричном питании также должно быть равно нулю. Поэтому для них напряжение смещения нуля – это напряжение на выходе при закороченном (нулевом) входе, причем оно отсчитывается относительно земли (нуля).

Более выгодным является пересчет напряжения смещения нуля во входную цепь:

, (6.2)

где Ucм вх – приведенное (ко входу) напряжение смещения нуля;

Uсм вых – напряжение смещения нуля на выходе усилителя;

К – коэффициент усиления.

Можно считать что это напряжение всегда приложено ко входу УПТ (рисунок 6.3), вызывая появление на выходе дополнительного напряжения, не обусловленного входным полезным сигналом.

Рисунок 6.3. УПТ с источником напряжения смещения нуля, приведенного ко входу

Такой подход сразу же показывает один из методов борьбы с напряжением смещения нуля – надо на вход усилителя подать (кроме входного полезного сигнала) еще дополнительное напряжение, по величине равное Uсмвх, но противоположное ему по знаку. Дополнительное напряжение скомпенсирует Uсм вх и изменение выходного напряжения будет отображать изменение входного информационного сигнала. В операционных усилителях, которые, как было указано выше, являются самыми распространенными типами УПТ, приводимые в технической литературе значения напряжения смещения нуля являются напряжения смещения нуля, приведенными ко входу. В определении этого параметра операционных усилителей, указывается, что Uсм – это то напряжение, которое необходимо подать на вход в отсутствии информационного сигнала, при котором выходное напряжение становится равным нулю.

Большим недостатком УПТ прямого усиления, которое резко сужает их область применения, является зависимость их характеристик и параметров от дестабилизирующих факторов – температуры, напряжения источника питания, сопротивления нагрузки и т.п. Их влияние, прежде всего, проявляется в нестабильности положения рабочей точки. Подобная зависимость наблюдается и в каскадах усилителей переменного тока (см. разделы 3). Однако в них она не приводила к ухудшению параметров всей схемы. Даже если рабочая точка какого-либо каскада и изменилась, то это изменение не сказывалось на рабочей точке последующих каскадов, так как элементы межкаскадной связи (конденсаторы, трансформаторы) не пропускали на вход последующих каскадов постоянную составляющую. Поэтому никаких дополнительных мер, кроме стабилизации точки покоя отдельного каскада, в усилителях переменного тока обычно не предпринимается.

Для УПТ прямого усиления изменение напряжения на входе первого каскада (неважно, по каким причинам – из-за изменения входного полезного сигнала или из-за изменения положения рабочей точки, например, в связи с изменением температуры, старения элементов или любых других дестабилизирующих факторов) усиливается этим и последующими каскадами. Это приводит к тому, что даже при отсутствии входного сигнала и компенсации Uсм вх напряжение на выходе УПТ изменяется. Это явление получило название дрейфа нуля. Характеристика дрейфа для наиболее значимых дестабилизирующих факторов обычно приводится в технической документации на УПТ. Например, в параметрах операционных усилителей имеется показатель изменения напряжения смещения нуля при изменении температуры на один градус.

Напряжение дрейфа на выходе усилителя, даже при компенсации Uсм, может оказаться одного порядка с напряжением сигнала или даже больше его. Поэтому наряду с такими методами уменьшения дрейфа, как стабилизация напряжения источников питания, применение глубокой отрицательной обратной связи и другие, используют сугубо схемотехнические меры, связанные с рациональным выбором элементов и построением самих схем усиления.

Основными методами повышения устойчивости УПТ являются:

1. Применение балансных (мостовых) схем.

2. Преобразование постоянного напряжения в переменное и усиление переменного напряжения с последующим выпрямлением (усиление с модуляцией и демодуляцией сигнала – МДМ).

1.4. Балансные схемы УПТ

Балансные УПТ строятся на основе схемы сбалансированного четырехплечного уравновешенного моста: два одинаковых усилительных элемента, работающие в идентичном режиме, образуют два плеча моста, а другими двумя плечами являются два одинаковых резистора Rк в их коллекторной цепи. Каскады могут быть выполнены как на основе биполярных, так и полевых транзисторов. Типовая балансная схема транзисторного УПТ приведена на рисунке 6.4.

Рисунок 6.4. Балансная схема УПТ

Данная схема по существу представляет собой мост, плечами которого являются коллекторные резисторы и внутренние сопротивления транзисторов VTI и VT2. Резисторы Rб1 и Rб2 входят в делители напряжения источника витания и служат для выбора исходного режима работы транзисторов. В объединенную эмиттерную цепь включен резистор . К одной из диагоналей поста подведена напряжение источника питания Ек, а с другой – снимаются выходное напряжение (нагрузку каскада подключают между коллекторами транзисторов):

(6.3)

Для нормальной работы схемы необходима полная симметрия плеч. В этом случае в исходном состоянии (до поступления входного сигнала) мост окажется сбалансированным, а напряжение на его выходе будет равно нулю. Реально симметрия достигается, прежде всего, выбором согласованной пары (идентичных) транзисторов и вспомогательных элементов каскада (резисторов цепей смещения, стабилизации и т.п.). Нередко используются транзисторные сборки, в которых оба активных элемента выполняются в едином технологическом процессе на одной подложке, в непосредственной близости друг от друга. Если в схеме обеспечена абсолютная симметрия, то выходное напряжение не изменяется из-за действия дестабилизирующих факторов (температуры и других внешних факторов).

При полной симметрии плеч токи покоя обоих транзисторов, а также их отклонения в случае изменения режима (например, при изменении напряжения Ек изменении температуры и т. п.) имеют равную величину. Потенциалы коллекторов при этом также равны или получают одинаковые приращения напряжений. Поэтому при одинаковом воздействии дестабилизирующих факторов на оба транзистора одновременно баланс моста не нарушается и выходное напряжение не появляется, т.е. напряжение дрейфа равно нулю.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы