Усилители постоянного тока и операционные усилители

При подаче входного сигнала любой полярности состояние транзисторов меняются в разных направлениях (один транзистор приоткрывается, другой призакрывается), так как на их базы действуют разные по знаку напряжения. Мост разбалансируется. Следовательно, потенциалы коллекторов транзисторов получают одинаковые по величине, но противоположные по знаку приращения. Появляется выходное напряжение, велич

ина и полярность которого зависят только от величины и полярности входного напряжения. Таким образом, амплитудная характеристика балансной схемы принципиально не должна отличаться от прямой линии, проходящей через начало координат.

Вместе с тем на резисторе не создается напряжение обратной связи для переменных составляющих токов ∆Iэ1 и ∆Iэ2, вызванных действием полезного сигнала. Это объясняется тем, что токи эмиттеров обоих транзисторов под воздействием сигнала получают равные, но противоположные приращения (∆Iэ1 = – ∆Iэ2) так как потенциалы баз всегда противоположны друг другу (когда на базу VT1 от источника сигнала подается плюс, на базу VT2 – минус и наоборот). Следовательно, коэффициент усиления схемы не уменьшается.

Обратите внимание на то, что входное и выходное напряжения не связаны с потенциалом земли (общим проводом). Конечно, можно оперировать напряжением на каждом из таких входов или выходов по отношению к земле, однако в таких случаях принято использовать понятия дифференциального и синфазного напряжений. Дифференциальное напряжение представляет собой разность входных (выходных) напряжений:

Uдиф = U1U2.

Синфазное напряжение можно определить как полусумму напряжений:

. (6.4)

В таком случае напряжения на входе балансного усилителя можно представить следующим образом (рисунок 6.5).

Рисунок 6.5. Дифференциальное и синфазное напряжение

Дифференциальное напряжение равно нулю, если два входа каскада соединить между собой. В таком случае все входное напряжение представляет собой синфазное входное напряжение. В полностью сбалансированном балансном каскаде в этом случае выходное напряжение будет равно нулю, причем для любого значения синфазного сигнала. Таким образом, балансные усилители усиливают только дифференциальную составляющую и не усиливают синфазную составляющую.

При рассмотрении балансовых схем выделяют дифференциальные и синфазные коэффициенты усиления. Их величину можно определить таким образом.

При подаче на входы двух одинаковых, но противоположных по знаку напряжений (в этом случае синфазное напряжение равно нулю) транзисторы работают в противофазе. Поэтому при одинаковом воздействии на каждый из транзисторов одинакового напряжения баланс моста не нарушается и выходное напряжение не появляется. Воздействие дифференциальной составляющей приводит к разбалансу моста и было описано выше.

В реальных балансных схемах всегда имеется некоторая асимметрия. Поэтому напряжение дрейфа на выходе полностью не исчезает. Однако дрейф нуля в балансных схемах определяется разностью токов обоих транзисторов и поэтому значительно меньше, чем в обычных схемах прямого усиления. Также на выходе появляется сигнал, определяемый синфазной составляющей входного сигнала.

1.5. Дифференциальный усилитель. Входные токи смещения

При построении многокаскадных схем УПТ балансные каскады можно соединять друг с другом непосредственной связью. При этом коллекторы предыдущего каскада соединяются с базами последующего.

В некоторых случаях выходной сигнал в балансном каскаде снимается с одного из коллекторов, а входные сигналы поступают на базы обоих транзисторов (рисунок 6.6). Такая схема имеет симметричный вход и несимметричный выход (либо с коллектора VT1 , либо с коллектора VT2). Фаза выходного сигнала совпадает с фазой сигнала Uвх1 и противоположна фазе сигнала Uвх2. Элементы схемы можно подобрать так, что выходное напряжение будет пропорционально разности входных напряжений, и в идеальном случае не будет изменяться, если напряжения Uвх1 и Uвх2 получают равные приращения одного знака. Такой усилительный каскад называют дифференциальным.

Рисунок 6.6 Балансная схема УПТ

Так как такие усилители усиливают разность входных сигналов, то можно считать, что один из входов усиливается с положительным коэффициентом усиления, а другой – с отрицательным. Поэтому часто такие входы называются соответственно не инвертирующим (прямым) и инвертирующим (инверсным).

Дифференциальный усилитель характеризуется коэффициентом усиления разности входных напряжений а также коэффициентом усиления среднего уровня входных напряжений (синфазный сигнал)

(6.5)

(6.6)

где К1 и К2– коэффициенты усиления по первому и второму входам (с учетом возможной асимметрии каналов).

Разностный сигнал (т.е. дифференциальная составляющая входного напряжения) есть полезный сигнал, который не6обходимо усилить, синфазная же составляющая является помехой, которая не должна проникать на выход, т.е. должна быть ослаблена. Подобная ситуация возникает при передаче информации (например, сигналов от датчиков) по длинным линиям связи (проводам). На оба эти провода действуют одни и те же напряжения помех и шумов, которые образуют синфазную составляющую входного сигнала. Дифференциальные каскады на входе усилителя резко уменьшают величину помех и шумов и усиливают полезный сигнал.

Для того чтобы усилитель реагировал только на разность входных напряжений, необходимо выполнение неравенства Ксин << Кдиф. А для этого, как следует из выражений (6.5) и (6.6), необходимой является одинаковость значений коэффициентов усиления по обоим каналам.

Рассмотрим некоторые варианты построения каскадов дифференциальных усилителей (ДУ). Дифференциальный каскад может иметь два выхода, сигналы на которых противофазные, поэтому их можно использовать в качестве фазоинверсных каскадов (рисунок 6.6). Если используется только один вход дифференциального усилителя, то коллекторный резистор противоположного плеча можно исключить из схемы (рисунок 6.7а).

Рисунок 6.7. Модифицированные схемы дифференциальных усилителей

Для увеличения дифференциального коэффициента необходимо увеличить сопротивление в цепи коллектора, а для уменьшения синфазного – увеличить сопротивление в цепи эмиттера. Просто увеличить этот резистор нецелесообразно, так как это приводит к уменьшению коллекторного тока транзисторов. Поэтому очень часто в эти цепи вводят источники тока (рисунок 6.7,б), которые строят на основе транзисторных структур. В этих случаях наиболее часто применяют двухполярный источник питания. Наличие двухполярного источника позволяет не только более гибко организовать питание всех элементов схемы, но и более жестко привязать входные сигналы к нулевому потенциалу (земле).

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы