Цезий
Фториды цезия выделяются из водных растворов в виде кристаллогидратов. Они довольно устойчивы; заметно возгоняются при температуре выше 800–900 °С. Фториды хорошо растворяются в воде; их получают нейтрализацией карбонатов цезия избытком плавиковой кислоты с последующим упариванием раствора досуха.
Хлориды цезия выделяются из водных растворов в виде негигроскопичных безводных кристаллов ро
мбической формы.
Хлориды цезия термически устойчивые соединения, плавящиеся без разложения; они хорошо растворяются в воде и в муравьиной кислоте. В соляной кислоте растворимость хлоридов уменьшается с повышением концентрации НС1. Это свойство широко используется в промышленности.
Бромиды цезия кристаллизуются в виде негигроскопичных безводных кубиков или ромбических додекаэдров. Термически это довольно устойчивые соединения. При нагревании выше температур плавления (682° С для КЬВг; 627° С для ОзВг) они частично разлагаются с выделением брома или бромистово-дородной кислоты.
Бромиды получают взаимодействием нагретого водного раствора гидроокиси цезия и брома:
6CsОН + ЗВг2 = 5СsВг + СsВrOз + ЗН20.
После окончания реакции в раствор вводят порошок активированного угля, смесь упаривают досуха, и остаток осторожно прокаливают с углеродом при 300–450° С:
2СsВr03+ЗС= 2СsВг + ЗС02.
Иодиды цезия выделяются из водных растворов в виде безводных хорошо выраженных кубических кристаллов, стабильных при нормальной температуре и 'хорошо растворимых в абсолютном спирте и эфире. Сг13 стабилен при нормальной температуре и начинает разлагаться с отделением при 115° С. С повышением температуры растворимость иодидов, как и бромидов цезия, возрастает.
Возгонка иодидов цезия на воздухе сопровождается их частичной диссоциацией с выделением элементарного йода. Иодиды цезия отличаются от других галогенидов повышенной окисляемостью и способностью к образованию продуктов типа MeI • 4S02. Под действием окислителей иод легко выделяется из разбавленных растворов иодидов рубидия и цезия.
Иодиды цезия можно получить при взаимодействии либо гидроохиси с иодом при нагревании, либо карбонатов с иодом в присутствии восстановителя. В обоих случаях сухой остаток после выпаривания раствора прокаливают и выщелачивают водой. Для очистки иодидов цезияот калия кристаллизацию проводят в присутствии иодистоводородной кислоты при 30° С. При этом содержание примеси калия понижается до 1–10-30% (по массе). Кристаллы иодидов промывают холодным сухим ацетоном и высушивают в вакууме при 75°С.
Сульфиды СsSn, (n=1–6) получают взаимодействием металла с S в жидком NН3.
Сульфаты цезия изоморфны и кристаллизуются в виде бесцветных ромбических кристаллов. Сульфаты и цезия характеризуются сравнительно высокими температурами плавления и летучестью (температура плавления сульфата цезия 1019 °С). Заметное улетучивание сульфатов происходит выше 1400 °С без изменения состава.
При прокаливании в токе водорода или аммиака сульфаты цезия (620–770° С) переходят в сравнительно легкоиспаряющиеся сульфиды. Сульфаты цезия хорошо растворимы в воде, во много раз: лучше, чем сульфат калия. Ниже приведены растворимости сульфатов в воде в зависимости от температуры:
Таблица 5
Температура, ˚С |
0 |
20 |
40 |
60 |
80 |
100 |
Растворимость, г/100 г. воды | ||||||
K2SO4 |
7,33 |
11,15 |
14,79 |
18,2 |
21,29 |
24,1 |
Rb2SO4 |
36,4 |
48,2 |
58,5 |
67,4 |
75 |
81,8 |
Cs2SO4 |
167,1 |
178,7 |
189,9 |
199,9 |
210,3 |
220,3 |
Сульфаты легко получают взаимодействием серной кислоты с карбонатами цезия или их хлоридами, а также из квасцов, осаждая алюминий квасцов избытком аммиака.
Известны также гидросульфаты (МеНS04), дисульфаты (Ме2S2О7), пероксосульфаты (Ме2S2О8) цезия. Для получения гидросульфатов сульфаты, карбонаты или хлориды нагревают с избытком серной кислоты при 400–500° С до получения сухого остатка, который растворяют в минимальном количестве воды; раствор упаривают досуха, остаток промывают абсолютным этанолом, затем эфиром.
Шениты цезия Ме2SO4·Ме'SO4·6Н20, где Ме–Сз, а Ме' – Сu, Со, Мg, Мn, Сd, Ni, образуют изоморфные бесцветные или ярко окрашенные кристаллы моноклинной сингонии. При нагревании шениты сначала переходят в дигидраты (70–100° С), а затем полностью обезвоживаются (140 – 200° С). Безводные соли не разлагаются даже при нагревании до 1000° С. В ряду шенитов рубидиевые соли обладают наименьшей растворимостью, что благоприятно при получении чистых препаратов рубидия методом фракционной кристаллизации.
Цезиевыми квасцами называют соединения, общая формула которых Ме-Э (S04)· 12НаО, где Ме – Cs, а Э – один из следующих трехвалентных катионов: А1, Сr, Fе, Тi, V, Мn, Gа, In, Со. Наибольшее значение в технологии цезия имеют алюмоцезиевые квасцы кристаллизующиеся в виде больших блестящих и прозрачных изотропных октаэдрическнх кристаллов, имеющих кубическую гранецентрировакную решетку типа NaCl.
В ряду щелочных металлов: Na К, Rb и Cs растворимость квасцов понижается с увеличением атомной массы. Например, растворимость разных квасцов в пересчете на безводную соль при 15° С такова, %:
Натриевые 27,9
Калиевые 4,8
Рубидиевые 0,25
Цезиевые 0,35
На рис. 1, где показано влияние температуры на растворимость различных квасцов, видно, что алюмоцезиевые квасцы обладают наименьшей растворимостью по сравнению с другими квасцами