Цезий
Поллуциты – это алюмосиликаты, сложные и весьма прочные соединения. Их состав определяют формулой (Cs, Na) [AlSi2O6] · nH2O, и хотя цезия в них много, извлечь его не так просто. Чтобы «вскрыть» минерал и перевести в растворимую форму ценные компоненты, его обрабатывают при нагревании концентрированными минеральными кислотами – плавиковой или соляной и серной. Затем освобождают раствор от всех т
яжелых и легких металлов и, что особенно трудно, от постоянных спутников цезия – щелочных металлов: калия, натрия и рубидия.
Для извлечения цезия из поллуцита используют следующие методы: кислотные, спекание и сплавление, прямое получение металлического цезия в кислотных методах применяют галогеноводородные кислоты (чаще соляную) или Н2S04. Поллуцит разлагают концентрированной соляной кислотой. При разложении поллуцита серной кислотой получают алюмоцезиевые квасцы CsАl(SO4)2∙12H2O
Из методов спекания и сплавления наиболее, распространен метод Аревда: поллуцит спекают со смесью СаО и СаС12, спек выщелачивают в автоклаве горячей водой, раствор упаривают досуха с Н2S04 для отделения СаS504, остаток обрабатывают горячей водой; из полученного раствора осаждают Сs3[Sb2С19]. Прямое извлечение металлического цезия осуществляют путем нагревания до 900 °С в вакууме смеси (1:3) измельченного поллуцита и Са (или А1).
Цезий из лепидолита получают попутно при его переработке на соединения лития. Цезий осаждают из маточных растворов после выделения Li2СОз или LiОН в виде смеси алюмоцезиевых, алюморубидиевых и алюмокалиевых квасцов.
Для разделения Cs, RЬ и К и получения чистых соединений цезия применяют методы фракционированной кристаллизации квасцов и нитратов, осаждения и перекристаллизации Сs3[Sb2Cl9], Сs2[SnCl6]. Используют также ионообменную хроматографию на синтетических смолах и неорганических ионитах (клиноптилолит и другие), экстракцию производными фенола [4-фтор-бутил-2 – (агметилбензил) фенол, алкилфенолы С7-С9 и др.]. Для получения соединений цезия высокой чистоты применяют его полигалогениды.
Извлечение радиоактивного изотопа 137Cs из растворов, полученных при переработке радиоактивных отходов ядерных реакторов, осуществляют методами соосаждения с гексацианоферратами Fе, Ni, Zn или фосфоровальфраматом аммония, ионного обмена на гексацианоферрате Ni, фосфоровольфрамате аммония и др., экстракционным.
Металлический цезий получают в основном металлотермическим восстановлением СsС1 (кальцием или магнием, 0,1–10 Па, 700–800 °С) с послед, очисткой от примесей ректификацией и вакуумной дистиляцией. По другому способу проводят электролиз расплава CsНа1 с жидким свинцовым катодом и получают сплав Cs-РЪ, из которого выделяют металлический цезий дистилляцией в вакууме. Цезий высокой чистоты получают медленным термическим разложением CsNз в вакууме (менее 10 Па, 390–395 °С).
Определение. Качественно цезий обнаруживают по характерным линиям спектра 894,35 нм и 852,11 нм. Дня микрохимического обнаружения используют осаждение С^З^СЬ], Cs3[В1219], Cs[3п15] и др. менее избирательные реакцииции. Наиболее распространенные методы определения микроколичеств цезия – эмиссионная пламенная фотометрия и атомно-абсорбционная спектрометрия. Применяют также радиохимический метод изотопного разбавления и нейтронно-активационный анализ.
При высоком содержании цезия в пробе его определяют гравиметрически в виде Сs [В(С6Н5)4], СsBi2I9, СsТеI6 и некоторыхрых других солей. В гораздо меньшей степени используют тигриметрические и спекгрофотометрические методы.
Современные методы извлечения цезия из поллуцитов основаны на предварительном сплавлении концентратов с избытком извести и небольшим количеством плавикового шпата. Если вести процесс при 1200 °C, то почти весь цезий возгоняется в виде окиси Cs2O. Этот возгон, конечно, загрязнен примесью других щелочных металлов, но он растворим в минеральных кислотах, что упрощает дальнейшие операции.
Из лепидолитов цезий извлекается вместе с рубидием попутно, как побочный продукт производства лития. Лепидолиты предварительно сплавляют (или спекают) при температуре около 1000 °C с гипсом или сульфатом калия и карбонатом бария. В этих условиях все щелочные металлы превращаются в легкорастворимые соединения – их можно выщелачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция – отделение цезия от рубидия и громадного избытка калия. В результате ее получают какую-либо соль цезия – хлорид, сульфат или карбонат. Но это еще только часть дела, так как цезиевую соль надо превратить в металлический цезий. Чтобы понять всю сложность последнего этапа, достаточно указать, что первооткрывателю цезия – крупнейшему немецкому химику Бунзену – так и не удалось получить элемент №55 в свободном состоянии. Все способы, пригодные для восстановления других металлов, не давали желаемых результатов. Металлический цезий был впервые получен только через 20 лет, в 1882 г., шведским химиком Сеттербергом в процессе электролиза расплавленной смеси цианидов цезия и бария, взятых в отношении 4:1. Цианид бария добавляли для снижения температуры плавления. Однако барий загрязнял конечный продукт, а работать с цианидами было трудно ввиду их крайней токсичности, да и выход цезия был весьма мал. Вол ее рациональный способ найден в 1890 г. известным русским химиком Н.Н. Бекетовым, предложившим восстанавливать гидроокись цезия металлическим магнием в токе водорода при повышенной температуре. Водород заполняет прибор и препятствует окислению цезия, который отгоняется в специальный приемник. Однако и в этом случае выход цезия не превышает 50% теоретического.
Наилучшее решение трудной задачи получения металлического цезия было найдено в 1911 г. французским химиком Акспилем. При методе Акспиля, до сих пор остающемся наиболее распространенным, хлорид цезия восстанавливают металлическим кальцием в вакууме, причем реакция
2CsCl + Ca → CaCl2 + 2Cs
идет практически до конца. Процесс ведут в специальном приборе (в лабораторных условиях – из кварца или тугоплавкого стекла), снабженном отростком. Если давление в приборе не больше 0,001 мм рт. ст., температура процесса может не превышать 675 °C. Выделяющийся цезий испаряется и отгоняется в отросток, а хлористый кальций полностью остается в реакторе, так как в этих условиях летучесть соли ничтожна (температура плавления CaCl2 равна 773 °C, т.е. на 100 °C выше температуры процесса). В результате повторной дистилляции в вакууме получается абсолютно чистый металлический цезий.
В литературе описаны еще многие другие способы получения металлического цезия из его соединений, но, как правило, они не сулят особых преимуществ. Так, при замене металлического кальция его карбидом температуру реакции приходится повышать до 800 °C, и конечный продукт загрязняется дополнительными примесями. Можно разлагать азид цезия или восстанавливать цирконием его бихромат, но эти реакции взрывоопасны. Впрочем, при замене бихромата хроматом цезия процесс восстановления протекает спокойно, и, хотя выход не превышает 50%, отгоняется очень чистый металлический цезий. Этот способ применим для получения небольших количеств металла в специальном вакуумном приборе.
Другие рефераты на тему «Химия»:
- Обмен углеводов
- Рентгенофлуоресцентное определение редких элементов Sr, Rb, Nb в литий-фтористых редкометальных гранитах
- Влияние модифицированной полиметакриловой кислоты, ковалентно связанной с порфирином, на его кислотно-основные свойства
- Скорость химической реакции
- Химические свойства альдегидов и кетонов. Реакции окисления и восстановления