Транспортная задача с ограничениями возможных транспортных средств

Рассчитываются невязки по столбцам и строкам.

Невязка по строке , i=1,m, j=1,n (2.19)

Невязка по строке , i=1,m, j=1,n (2.20)

Затем рассчитывается суммарная невязка плана

(2.21

)

Если суммарная невязка плана = 0, то это говорит о получении оптимального решения. Если  не равно 0, то переходим к этапу разметки. Выводим L - общая стоимость перевозок (см рисунок 2.3).

Рисунок 2.3 - блок - схема подпрограммы вычисления невязки.

Описание программы.

Описание работы программы:

пользователь вводит количество поставщиков и потребителей;

пользователь вводит все данные о поставщиках и потребителях;

пользователь вводит ограничения;

строит матрицу Сij, элементы которой отображают определенную скидку;

Все используемые в программе переменные и подпрограммы, кратко описаны в таблицах 2.1

Описание блок-схемы:

блок-схема проверка на условие баланса представлена на рисунке 2.1;

блок - схема общего алгоритма вычисления опорного плана представлена на рисунке 2.2;

блок схема вычисления невязки представлено на рисунке 2.3

Таблица 2.1 -Используемые переменные

Имя

Тип

Описание

Cont

TZLPTableContext

В каждой конкретной библиотеке будет свой тип контекста

Значение функции

Integer  

Код возврата:

ResultError = - 1 - ошибка в алгоритме;

ResultFinish = 0 - успешное окончание расчетов;

ResultNoSolution = 1 - нет решения;

SourceF

TFunction

Целевая функция

Limitations

TLimitations

Ограничения

MinMax

TFunctionType

Функция на минимум или максимум.

ftMin - минимум;

ftMax - максимум.

Len

 

Integer

Длина массива ограничений

Factors

TDynIntegerArray

Массив ограничений: последовательность из Len целых чисел (Integer)

Значение функции

TIntegerMatrix

матрица из целых чисел

Страница:  1  2  3  4 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы