Применение экономико-математических методов в экономике

Оптимизационные модели оперируют с понятием максимизации полезности, результатом которой является выбор поведения, при котором сохраняется состояние равновесия на микроуровне.

Статические модели описывают мгновенное состояние экономического объекта или явления.

Динамическая модель описывает состояние объекта как функцию времени.

Стохастические модели учитывают случайные воздействия

на экономические характеристики и используют аппарат теории вероятностей.

Детерминированные модели предполагают наличие между изучаемыми характеристиками функциональной связи и, как правило, используют аппарат дифференциальных уравнений.

Натурное моделирование проводится на реально существующих объектах при специально подобранных условиях, например, эксперимент, проводимый во время производственного процесса на действующем предприятии, отвечающий при этом задачам самого производства. Метод натурного исследования возник из потребностей материального производства тогда, когда еще не существовала наука. Он сосуществует наравне с естественнонаучным экспериментом и в настоящее время, демонстрируя единство теории и практики. Разновидностью натурного моделирования является моделирование путем обобщения производственного опыта. Отличие состоит в том, что вместо специально образованного в производственных условиях эксперимента пользуются имеющимся материалом, обрабатывая его в соответствующих критериальных соотношениях, используя теорию подобия.

Понятие модели всегда требует введения понятия подобия, которое определяется как взаимно однозначное соответствие между объектами. Функция перехода от параметров, характеризующих один из объектов, к параметрам, характеризующим другой объект, известна.

Модель обеспечивает подобие только тех процессов, которые удовлетворяют критериями подобия.

Теория подобия применяется при:

а) отыскании аналитических зависимостей, соотношений и решений конкретных задач;

б) обработке результатов экспериментальных исследований в тех случаях, когда результаты представлены в виде обобщенных критериальных зависимостей;

в) создании моделей, воспроизводящих объекты или явления в меньших масштабах, или по сложности отличающихся от исходных.

При физическом моделировании исследование проводится на установках, обладающих физическим подобием, т.е. когда в основном сохраняется природа явления. Например, связи в экономических системах моделируются электрической цепью/ сетью. Физическое моделирование может быть временным, при котором исследуются явления, протекающие только во времени; пространственно-временным – когда изучаются нестационарные явления, распределенные во времени и пространстве; пространственным, или объектным – когда изучаются равновесные состояния, не зависящие от других объектов или времени.

Содержанием теории подобия является изучение подобных явлений и методов установления подобия.

Процессы считают подобными, если существует соответствие сходственных величин рассматриваемых систем: размеров, параметров, положения и др.

Закономерности подобия формулируются в виде двух теорем, устанавливающих соотношения между параметрами подобных явлений, не указывая способов реализации подобия при построении моделей. Третья, или обратная теорема определяет необходимые и достаточные условия подобия явлений, требуя подобия условий однозначности (выделения данного процесса из многообразия процессов) и такого подбора параметров, при которых критерии подобия, содержащие начальные и граничные условия, становятся одинаковыми.

Первая теорема

Подобные в том или ином смысле явления имеют одинаковые сочетания параметров.

Безразмерные комбинации параметров, численно одинаковые для всех подобных процессов, называются критериями подобия.

Вторая теорема

Всякое полное уравнение процесса, записанное в определенной системе единиц, может быть представлено зависимостью между критериями подобия, т.е. уравнением, связывающим безразмерные величины, полученные из участвующих в процессе параметров.

Зависимость является полной, если учитывать все связи между входящими в нее величинами. Такая зависимость не может измениться при изменении единиц измерения физических величин.

Третья теорема

Для подобия явлений должны быть соответственно одинаковыми определяющие критерии подобия и подобны условия однозначности.

Под определяющими параметрами понимают критерии, содержащие те параметры процессов и системы, которые в данной задаче можно считать независимыми (время, капитал, ресурсы и т.д.); под условиями однозначности понимается группа параметров, значения которых, заданные в виде функциональных зависимостей или чисел, выделяют из возможного разнообразия явлений конкретное явление.

Подобие сложных систем, состоящих из несколько подсистем, подобны в отдельности, обеспечивается подобием всех сходственных элементов являющихся общими для подсистем.

Подобие нелинейных систем сохраняется, если выполняются условия совпадения относительных характеристик сходственных параметров, являющихся нелинейными или переменными.

Подобие неоднородных систем. Подход к установлению условий подобия неоднородных систем такой же, как и подход к нелинейным системам.

Подобие при вероятностном характере изучаемых явлений. Все теоремы условия подобия, относящиеся к детерминированным системам, оказываются справедливыми при условии совпадения плотностей вероятностей сходственных параметров, представленных в виде относительных характеристик. При этом дисперсии и математические ожидания всех параметров с учетом масштабов должны быть у подобных систем одинаковыми. Дополнительным условием подобия является выполнение требования физической реализуемости сходственной корреляции и между стохастически заданными параметрами, входящими в условие однозначности.

Существует два способа определения критериев подобия:

а) приведение уравнений процесса к безразмерному виду;

б) использование параметров, описывающих процесс, при том что уравнение процесса неизвестно.

На практике пользуются также еще одним способом относительных единиц, являющимся модификацией первых двух. При этом все параметры выражаются в долях от определенным образом выбранных базисных величин. Наиболее существенные параметры, выраженные в долях базисных можно рассматривать как критерии подобия, действующие в конкретных условиях.

Таким образом, экономико-математические модели и методы – это не только аппарат для получения экономических закономерностей, но и широко используемый инструментарий практического решения проблем в управлении, прогнозировании, бизнесе, банковском деле и других разделах экономики.

1.2 Моделирование как метод научного познания

Научное исследование представляет собой процесс выработки новых знаний, один из видов познавательной деятельности. Для проведения научных исследований используются различные методы, одним из которых является моделирование, т.е. исследование какого-либо явления, процесса или системы объектов путем построения и изучения его моделей. Моделирование означает также использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.

Страница:  1  2  3  4 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы