Выборочные исследования в эконометрике
При справедливости гипотезы однородности M(р1* - р2*) = 0. Поэтому правило принятия решения при проверке однородности двух выборок выглядит так:
1. Вычислить статистику
2. Сравнить значение модуля статистика |Q| с граничным значением K. Если |Q|<K, то принять гипотезу однородности H0 . Если же |Q|>K, то заявить
об отсутствии однородности и принять альтернативную гипотезу H1 .
Граничное значение К определяется выбором уровня значимости статистического критерия проверки однородности. Из приведенных выше предельных соотношений следует, что при справедливости гипотезы однородности H0 для уровня значимости имеем (при
Следовательно, граничное значение в зависимости от уровня значимости целесообразно выбирать из условия
Здесь - функция, обратная к функции стандартного нормального распределения. В социально-экономических исследованиях наиболее распространен 5% уровень значимости, т.е. Для него К = 1,96.
Пример. Пусть в первой группе из 500 опрошенных ответили "да" 200, а во второй группе из 700 опрошенных сказали "да" 350. Есть ли разница между генеральными совокупностями, представленными этими двумя группами, по доле отвечающих "да"?
Уберем из формулировки примера термин "генеральная совокупность".
Пусть из 500 опрошенных мужчин ответили "да, я люблю пепси-колу" 200, а из 700 опрошенных женщин 350 сказали "да, я люблю пепси-колу". Есть ли разница между мужчинами и женщинами по доле отвечающих "да" на вопрос о любви к пепси-коле?
В рассматриваемом примере нужные для расчетов величины таковы: Вычислим статистику
Поскольку |Q| = 3,45 > 1,96, то необходимо отклонить нулевую гипотезу т принять альтернативную. Таким образом, мужчины и женщины отличаются по рассматриваемому признаку - любви к пепси-коле.
Необходимо отметить, что результат проверки гипотезы однородности зависит не только от частот, но и от объемов выборок. Предположим, что частоты (доли) зафиксированы, а объемы выборок растут. Тогда числитель статистики Q не меняется, а знаменатель уменьшается, значит, вся дробь возрастает. Поскольку знаменатель стремится к 0, то дробь возрастает до бесконечности и рано или поздно превзойдет любую границу. Есть только одно исключение - когда в числителе стоит 0. Следовательно, вывод эконометрика должен выглядеть так: "различие обнаружено" или "различие не обнаружено". Во втором случае различие, возможно, было бы обнаружено при увеличении объемов выборок.
Как и для доверительного оценивания вероятности, во ВЦИОМ разработаны две полезные таблицы, позволяющие оценить вызванные чисто случайными причинами допустимые расхождения между частотами в группах. Эти таблицы рассчитаны при выполнении нулевой гипотезы однородности и соответствуют ситуациям, когда частоты близки к 50% (табл.7) или к 20% (табл.8). Если наблюдаемые частоты - от 30% до 70%, то рекомендуется пользоваться первой из этих таблиц, если от 10% до 30% или от 70% до 90% - то второй. Если наблюдаемые частоты меньше 10% или больше 90%, то теорема Муавра-Лапласа и основанные на ней асимптотические формулы дают не очень хорошие приближения, целесообразно применять иные, более продвинутые математические средства, в частности, приближения с помощью распределения Пуассона.
Табл.7.
Допустимые расхождения (в %) между частотами в двух группах в случае, когда наблюдаются частоты от 30% до 70%
Объемы Групп |
750 |
600 |
400 |
200 |
100 |
750 |
6 |
7 |
7 |
10 |
12 |
600 |
7 |
8 |
8 |
11 |
13 |
400 |
7 |
8 |
10 |
11 |
14 |
200 |
10 |
11 |
11 |
13 |
16 |
100 |
12 |
13 |
14 |
16 |
18 |
Табл.8.
Допустимые расхождения (в %) между частотами в двух группах в случае, когда наблюдаются частоты от 10% до30% или от 70% до 90%
Объемы Групп |
750 |
600 |
400 |
200 |
100 |
750 |
5 |
5 |
6 |
8 |
10 |
600 |
5 |
6 |
7 |
8 |
10 |
400 |
6 |
7 |
8 |
9 |
11 |
200 |
8 |
8 |
9 |
10 |
12 |
100 |
10 |
10 |
11 |
12 |
14 |
Другие рефераты на тему «Экономико-математическое моделирование»:
- Основные понятия и методы экономико-математического моделирования
- Автокорреляционная функция. Примеры расчётов
- Эконометрическое моделирование - расчет коэффициентов корреляции и регрессии, анализ одномерного временного ряда
- Модели прогнозирования на основе временных рядов
- Математическое моделирование в управлении
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели