Прогноз годовой прибыли

ВАРИАНТ 5

Изучается зависимость средней ожидаемой продолжительности жизни от нескольких факторов по данным за 1995 г., представленным в табл. 5.

Таблица 5

Страна

Y

X

1

X2

X3

X4

Мозамбик

47

3,0

2,6

2,4

113

Бурунди

49

2,3

2,6

2,7

98

……………………………………………………………………………………

Швейцария

78

95,9

1,0

0,8

6

Принятые в таблице обозначения:

· Y — средняя ожидаемая продолжительность жизни при рождении, лет;

· X1 — ВВП в паритетах покупательной способности;

· X2 — цепные темпы прироста населения, %;

· X3 — цепные темпы прироста рабочей силы, %;

· Х4 — коэффициент младенческой смертности, %.

Требуется:

1. Составить матрицу парных коэффициентов корреляции между всеми исследуемыми переменными и выявить коллинеарные факторы.

2. Построить уравнение регрессии, не содержащее коллинеарных факторов. Проверить статистическую значимость уравнения и его коэффициентов.

3. Построить уравнение регрессии, содержащее только статистически значимые и информативные факторы. Проверить статистическую значимость уравнения и его коэффициентов.

Пункты 4 — 6 относятся к уравнению регрессии, построенному при выполнении пункта 3.

4. Оценить качество и точность уравнения регрессии.

5. Дать экономическую интерпретацию коэффициентов уравнения регрессии и сравнительную оценку силы влияния факторов на результативную переменную Y.

6. Рассчитать прогнозное значение результативной переменной Y, если прогнозные значения факторов составят 75 % от своих максимальных значений. Построить доверительный интервал прогноза фактического значения Y c надежностью 80 %.

Решение. Для решения задачи используется табличный процессор EXCEL.

1.С помощью надстройки «Анализ данных… Корреляция» строим матрицу парных коэффициентов корреляции между всеми исследуемыми переменными (меню «Сервис» ® «Анализ данных…» ® «Корреляция»). На рис. 1 изображена панель корреляционного анализа с заполненными полями[1]. Результаты корреляционного анализа приведены в прил. 2 и перенесены в табл. 1.

рис. 1. Панель корреляционного анализа

Таблица 1

Матрица парных коэффициентов корреляции

 

Y

X1

X2

X3

X4

Y

1

       

X1

0,780235

1

     

X2

-0,72516

-0,62251

1

   

X3

-0,53397

-0,65771

0,874008

1

 

X4

-0,96876

-0,74333

0,736073

0,55373

1

Анализ межфакторных коэффициентов корреляции показывает, что значение 0,8 превышает по абсолютной величине коэффициент корреляции между парой факторов Х2–Х3 (выделен жирным шрифтом). Факторы Х2–Х3 таким образом, признаются коллинеарными.

2. Как было показано в пункте 1, факторы Х2–Х3 являются коллинеарными, а это означает, что они фактически дублируют друг друга, и их одновременное включение в модель приведет к неправильной интерпретации соответствующих коэффициентов регрессии. Видно, что фактор Х2 имеет больший по модулю коэффициент корреляции с результатом Y, чем фактор Х3: ry,x2=0,72516; ry,x3=0,53397; |ry,x2|>|ry,x3| (см. табл. 1). Это свидетельствует о более сильном влиянии фактора Х2 на изменение Y. Фактор Х3, таким образом, исключается из рассмотрения.

Для построения уравнения регрессии значения используемых переменных (Y, X1, X2, X4) скопируем на чистый рабочий лист (прил. 3). Уравнение регрессии строим с помощью надстройки «Анализ данных… Регрессия» (меню «Сервис» ® «Анализ данных…» ® «Регрессия»). Панель регрессионного анализа с заполненными полями изображена на рис. 2.

Результаты регрессионного анализа приведены в прил. 4 и перенесены в табл. 2. Уравнение регрессии имеет вид (см. «Коэффициенты» втабл. 2):

ŷ = 75.44 + 0.0447 · x1 - 0.0453 · x2 - 0.24 · x4

Уравнение регрессии признается статистически значимым, так как вероятность его случайного формирования в том виде, в котором оно получено, составляет 1.04571·10-45 (см. «Значимость F» в табл. 2), что существенно ниже принятого уровня значимости a=0,05.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы