Математическая модель системы в переменных пространства состояний

ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ

Математическая модель системы в переменных пространства состояний имеет вид

, (2.1.1)

(2.1.2)

где мерный вектор параметров состояний;

мерный вектор управляющих воздействий; мерный вектор возмущающих воздействий; l- мерный вектор выходов; А – матрица состояний системы размерности ; В – матрица управлений размерности ; Г – матрица возмущений размерности ; С – матрица выходов размерности ln; D – матрица компенсаций (обходов) размерности lm.

Решение векторного дифференциального уравнения (2.1.1) имеет следующий вид:

, (2.1.3)

где - экспоненциал матрицы А.

Подставляя выражение (2.1.3) в формулу (2.1.2), получаем интегральное уравнение движения системы в переменных «вход – выход».

Рассмотрение движения системы в переменных пространства состояний связано с трудностью решения дифференциальных уравнений n-го порядка, описывающих движение системы в переменных «вход – выход», и с хорошо разработанными методами решения систем дифференциальных уравнений первого порядка.

2.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 2.2.1

Определить переходные процессы в системе

(2.2.1)

, (2.2.2)

под действием ступенчатых воздействий по каналам управления

и возмущения .

Решение

В соответствии с выражениями (2.1.2), (2.1.3) запишем уравнение движения системы в интегральной форме

. (2.2.3)

Учитывая, что u(t)=u*1(t)=u, r(t)=r*1(t)=r и t0=0, представим выражение (2.2.3) в виде

. (2.2.4)

Для нахождения экспоненциала матрицы А определим корни характеристического уравнения , то есть

и .

Так как корни различные действительные и матрица А диагональная, то ее экспоненциал равен

. (2.2.5)

Подставляя выражения (2.2.5) в формулу (2.2.4) и последовательно проводя преобразования, получаем

=

.

Следовательно, уравнение движения рассматриваемой системы в переменных «вход – выход» имеет вид:

.

УСТОЙЧИВОСТЬ

ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ

Устойчивость или неустойчивость линейной многомерной системы (2.1.1) определяется ее свободным движением ( ), которое характеризуется собственными числами матрицы А, определяемыми из характеристического уравнения

(3.1.1)

Линейная система (2.1.1) устойчива тогда и только тогда, когда все вещественные части собственных (характеристических) чисел λj=λj(A) (j=1,…,n) имеют неположительные значения, т.е. Reλj. Если Reλj<0, то система асимптотически устойчива.

Характеристическое уравнение (3.1.1) можно записать в виде

nn-1nn0. (3.1.2)

Условия устойчивости для системы n-го порядка записываются в виде определителей Гурвица, получаемых из квадратной матрицы коэффициентов характеристического уравнения (3.1.2).

.

Для устойчивости линейной системы по критерию Гурвица необходимо и достаточно, чтобы при α0>0 были положительными и все n диагональных определителей Гурвица, то есть ΔI>0 (i=l, .,n). Положительность последнего определителя Гурвица

Δn=αnΔn-1 (3.1.3)

при Δn-1>0 сводится к положительности свободного члена αn характеристического уравнения.

3.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 3.2.1

Определить устойчивость и характер свободного движения динамической системы, заданной в пространстве состояний векторными уравнениями

, (3.2.1)

. (3.2.2)

Решение.

Запишем для системы (3.2.1) характеристическое уравнение (3.1.1)

, (3.2.3)

решение которого дает следующие корни:

.

Рассматриваемая динамическая система является устойчивой. Ее свободное движение носит апериодический сходящийся характер, так как вещественные части корней характеристического уравнения отрицательные.

Задача 3.2.2

Определить устойчивость динамической системы, заданной в пространстве состояний векторно-матричными уравнениями

Страница:  1  2 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы