Статистические методы обработки данных

23

25

23

22

23

24

28

16

18

23

29

26

31

19

22

28

26

26

35

20

27

28

28

26

22

29

   

Используем пакет «Анализ данных». В зависимости от типа критерия выбирается один из трех: «Парный двухвыборочный t-тест для средних» - для связных выборок, и «Двухвыборочных t-тест с одинаковыми дисперсиями» или «Двухвыборочных t-тест с разными дисперсиями» - для несвязных выборок. Вызовите тест с одинаковыми дисперсиями, в открывшемся окне в полях «Интервал переменной 1» и «Интервал переменной 2» вводят ссылки на данные (А1-N1 и А2-L2, соответственно), если имеются подписи данных, то ставят флажок у надписи «Метки» (у нас их нет, поэтому флажок не ставится). Далее вводят уровень значимости в поле «Альфа» - 0,01. Поле «Гипотетическая средняя разность» оставляют пустыми. В разделе «Параметры вывода» ставят метку около «Выходной интервал» и поместив курсор в появившемся поле напротив надписи, щелкают левой кнопкой в ячейке В7. вывод результата будет осуществляться начиная с этой ячейки. Нажав на «ОК» появляется таблица результата. Сдвиньте границу между столбцами В и С, С и D, D и Е увеличив ширину столбцов В, С и D так, чтобы умещались все надписи. Процедура выводит основные характеристики выборки, t-статистику, критические значения этих статистик и критические уровни значимости «Р(Т<=t) одностороннее» и «Р(Т<=t) двухстороннее». Если по модулю t-статистика меньше критического, то средние показатели с заданной вероятностью равны. В нашем случае│-1,784242592│ < 2,492159469, следовательно, среднее число продаж значимо не отличается. Следует отметить, что если взять уровень значимости α=0,05, то результаты исследования будут совсем иными.

Двухвыборочный t-тест с одинаковыми дисперсиями

     
 

город 1

город 2

Среднее

23,57142857

26,41666667

Дисперсия

17,34065934

15,35606061

Наблюдения

14

12

Объединенная дисперсия

16,43105159

 

Гипотетическая разность средних

0

 

df

24

 

t-статистика

-1,784242592

 

P(T<=t) одностороннее

0,043516846

 

t критическое одностороннее

2,492159469

 

P(T<=t) двухстороннее

0,087033692

 

t критическое двухстороннее

2,796939498

 

Лабораторная работа №3

ПАРНАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ

Цель: Освоить методы построения линейного уравнения парной регрессии с помощью ЭВМ, научиться получать и анализировать основные характеристики регрессионного уравнения.

Рассмотрим методику построения регрессионного уравнения на примере.

ПРИМЕР. Даны выборки факторов хi и уi. По этим выборкам найти уравнение линейной регрессии ỹ = ах + b. Найти коэффициент парной корреляции. Проверить на уровне значимости а = 0,05 регрессионную модель на адекватность.

Х

0

1

2

3

4

5

6

7

8

9

Y

6,7

6,3

4,4

9,5

5,2

4,3

7,7

7,1

7,1

7,9

Для нахождения коэффициентов a и b уравнения регрессии служат функции НАКЛОН и ОТРЕЗОК, категории «Статистические». Вводим в А5 подпись «а=» а в соседнюю ячейку В5 вводим функцию НАКЛОН, ставим курсор в поле «Изв_знач_у» задаем ссылку на ячейки В2-K2, обводя их мышью. Результат 0,14303. Найдем теперь коэффициент b. Вводим в А6 подпись «b=», а в В6 функцию ОТРЕЗОК с теми же параметрами, что и функции НАКЛОН. Результат 5,976364. следовательно, уравнение линейной регрессии есть у=0,14303х+5,976364.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы