Статистические методы обработки данных
Необходимо найти их коэффициенты А и В, и сравнив показатели качества, выбрать функцию, которая наилучшим образом описывает зависимость.
Прибыль Y |
0,3 |
1,2 |
2,8 |
5,2 |
8,1 |
11,0 |
16,8 |
16,9 |
24,7 |
29,4 |
Прибыль X |
0,25 |
0,50 |
0,75 |
1,00 |
1,25 |
1,50 |
1,75 |
2,00 |
2,25 |
2,50 |
Введем данные в таблицу вместе с подписями (ячейки A1-K2). Оставим свободными три строчки ниже таблицы для ввода преобразованных данных, выделим первые пять строк, проведя по левой серой границе по числам от 1 до 5 и выбрать какой-либо цвет (светлый – желтый или розовый) раскрасить фон ячеек. Далее, начиная с A6, выводим параметры линейной регрессии. Для этого в ячейку A6 делаем подпись «Линейная» и в соседнюю ячейку B6 вводим функцию ЛИНЕЙН. В полях «Изв_знач_x» даем ссылку на B2-K2 и B1-K1, следующие два поля принимают значения по единице. Далее обводим область ниже в 5 строчек и левее в 2 строки и нажимаем F2 и Ctrl+Shift+Enter. Результат - таблица с параметрами регрессии, из которых наибольший интерес представляет коэффициент детерминации в первом столбце третий сверху. В нашем случае он равен R1 = 0,951262. Значение F-критерия, позволяющего проверить адекватность модели F1 = 156,1439
(четвертая строка, первый столбец). Уравнение регрессии равно
y = 12,96 x +6,18 (коэффициенты a и b приведены в ячейках B6 и C6).
Линейная |
12,96 |
-6,18 |
1,037152 |
1,60884 | |
0,951262 |
2,355101 | |
156,1439 |
8 | |
866,052 |
44,372 |
Определим аналогичные характеристики для других регрессий и в результате сравнения коэффициентов детерминации найдем лучшую регрессионную модель. Рассмотрим гиперболическую регрессию. Для ее получения преобразуем данные. В третьей строке в ячейку A3 введем подпись «1/x» а в ячейку B3 введем формулу «=1/B2». Растянем автозаполнением данную ячейку на область B3-K3. Получим характеристики регрессионной модели. В ячейку А12 введем подпись «Гипербола», а в соседнюю функцию ЛИНЕЙН. В полях «Изв_знач_y» и «Изв_знач_x2 даем ссылку на B1-K1 и преобразованные данные аргумента x – B3-K3, следующие два поля принимают значения по единице. Далее обводим область ниже 5 строчек и левее в 2 строки и нажимаем F2 и Ctrl+Shift+Enter. Получаем таблицу параметров регрессии. Коэффициент детерминации в данном случае равен R2 = 0,475661, что намного хуже, чем в случае линейной регрессии. F-статистика равна F2 = 7,257293. Уравнение регрессии равно y = -6,25453x18,96772.
Гипербола |
-6,25453 |
18,96772 |
2,321705 |
3,655951 | |
0,475661 |
7,724727 | |
7,257293 |
8 | |
433,0528 |
477,3712 |
Рассмотрим экспоненциальную регрессию. Для ее линеаризации получаем уравнение , где ỹ = ln y, ã = b, = ln a. Видно, что надо сделать преобразование данных – y заменить на ln y. Ставим курсор в ячейку А4 и делаем заголовок «ln y». Ставим курсор в В4 и вводим формулу LN (категория «Математические»). В качестве аргумента делаем ссылку на В1. Автозаполнением распространяем формулу на четвертую строку на ячейки В4-K4. Далее в ячейке F6 задаем подпись «Экспонента» и в соседней G6 вводим функцию ЛИНЕЙН, аргументами которой будут преобразованные данные В4-K4 (в поле «Изв_знач_ y»), а остальные поля такие же как и для случая линейной регрессии (B2-K2, 1, 1). Далее обводим ячейки G6-H10 и нажимаем F2 и Ctrl+Shift+Enter. Результат R3 = 0,89079, F3 = 65,25304, что говорит об очень хорошей регрессии. Для нахождения коэффициентов уравнения регрессии b = ã; ставим курсор в J6 и делаем заголовок «а=», а в соседней К6 формулу «=ЕХР(Н6)», в J7 даем заголовок «b=», а в К7 формулу «=G6». Уравнение регрессии есть y = 0,511707· e 6,197909x.
Экспонента |
1,824212 |
-0,67 |
a= |
0,511707 | |
0,225827 |
0,350304 |
b= |
6,197909 | ||
0,89079 |
0,512793 | ||||
65,25304 |
8 | ||||
17,15871 |
2,103652 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели