Исследование динамики ракеты при ее выходе из пусковой шахты при работающем двигателе

Так как высота выхода ракеты мала при Red < 2,5 ∙, то будем рассматривать случай, когда этот показатель выше.

Максимальное давление поток оказывает в передней критической точке (рис.5.10), после чего давление убывает, так как поток, обтекающий лобовую часть цилиндра, непрерывно разгоняется. При src="images/referats/2017/image168.png">давление становится равным статическому давлению невозмущенного потока. При достижении критических чисел Re пограничный слой потока, обтекающего цилиндр, перед областью отрыва становится турбулентным. Поскольку турбулентный слой содержит больше энергии, чем ламинарный, он получает возможность обтечь контур цилиндра по большей его части. Отрыв потока в ряде случаев доходит до , в результате чего лобовое сопротивление составляет .

Нужно заметить, что сложность и многообразие отрывных течений не позволяют получить достаточно общие и удовлетворительные аналитические решения, поэтому наиболее важные аналитические задачи решались экспериментальным путем.

Данные численного расчета сравнивались с физическим экспериментом (рис.5.8, рис.5.9, рис.5.10). Расчет проводился с = 20 м/с, что соответствует Re = 6,7 ∙.

При расчете были применены несколько моделей турбулентности, в том числе: модель переноса касательных напряжений (Shear-Stress Transport) «SST» («k-ω») и «RNG» модель, основанная на стандартной «k-ε» модели. Из рисунков 5.8 и 5.9 видно, что модель «RNG» наилучшим способом подходит к моделированию данной проблемы, так как данная схема имеет возможность учета эффектов закрученности и вращения, а, в свою очередь, вращение и закрученность осредненного потока оказывает существенное влияние на структуру турбулентности, в частности на турбулентную вязкость[16]. Но надо заметить, что применение модели турбулентности RNG требует расчетного времени в два раза больше чем в случае со схемой SST.

γ, град

1) – физический эксперимент; 2) – численный эксперимент (SST-модель)

Cp

1

2

1

Рисунок 5.8. Распределение давления по поперечному сечению цилиндра при Red=

1) – физический эксперимент; 2) – численный эксперимент (RNG-модель)

γ, град

1

Cp

2

1

Рис.5.9. Распределение коэффициента давления по поперечному сечению цилиндра при Red=

А)

Б)

А) – теоретическая схема обтекания Б) – физический эксперимент

В)

γ ≈ 130º

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Военное дело и гражданская оборона»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы