Исследование динамики ракеты при ее выходе из пусковой шахты при работающем двигателе

(5)

.

– Формула Пуайзеля для труб с некруглым поперечным сечением

, [6]

где – коэффициент сопротивления, отнесенный к гидравлическому диаметру; U – смоченный периметр.

Решая систему уравнений (1) – (5), получим, что d2= 0.586м, т.е. зазор равен 8 мм.

Выводы:

Необходимо отметить, что расчет был проведен в программе MathCAD в интегральной форме с помощью блока Given-Find. Выявлено, что расчет данной модели достаточно неустойчив, т.к. число сложных нелинейных уравнений в системе стремится к числу, при котором MathCAD может давать сбои (5-7 уравнений) [24]. Поэтому, необходим подбор параметров расчетной схемы, таких как точность (TOL) и, в особенности, начальные приближения искомых величин. При расчете удалось добиться небольшой погрешности из-за вычислительной схемы Δmax=0.05% (рис.2.11).

Для сравнения был проведен расчет в дифференциальной форме используя метод Рунге-Кутта, который, как и предполагалось, показал еще большую неустойчивость расчета и, как результат, большую погрешность (Δmax=23%) (рис.2.12). Так как в системе решаются сложные дифференциальные уравнения с быстро изменяющимися и осцилирующими функциями, то здесь проявилась сложность с подбором расчетного шага. Поэтому, данная расчетная схема в экстремумах функции дала максимальные погрешности.

На основании изложенного, была выбрана математическая модель, записанная в интегральной форме.

t, с

Δ, %

Рисунок 2.11. Диаграмма погрешности вычислений в интегральной модели

Δ, %

t, с

Рисунок 2.12. Диаграмма погрешности вычислений в дифференциальной модели

Примечание: Погрешность вычислений Δ, определялась из уравнения давлений

– для интегральной схемы

;

– для дифференциальной схемы

.

Из рис.2.12 видно, что при 0,02 секунды погрешность максимальна (23%), что говорит о том, что параметр p(t) в данной точке не отражает действительность (рис.2.13), а значит, говорит о не пригодности дифференциальной схемы в данном случае.

Рисунок 2.13. Дианрамма , рассчитанная в дифференциальной схеме

2.4 Расчет параметров выхода ракеты при заданной схеме

Теперь, определим параметры выхода ракеты для схемы с отводом (рис.2.10) с учетом вычисленных требований по давлению в «подракетном» пространстве.

Составим систему уравнений движения ракеты в ШПУ с учетом отвода газа.

;

На основе полученных данных при решении системы уравнений, построим графики зависимости параметров p, P, V, T2, Uист., от времени. Численные результаты приведены в таблице 2.1.

t,с

p, Па

Рисунок 2.14. График p(t)

t, c

V, м/с

Рисунок 2.15. График V(t)

P, Н

t, с

Рисунок 2.16. График P(t)

T2, ºK

t, c

Рисунок 2.17. График T2(t)

t, c

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Военное дело и гражданская оборона»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы