Исследование динамики ракеты при ее выходе из пусковой шахты при работающем двигателе

4. Возврат ко второму этапу и повторение процесса до тех пор, пока дальнейшие приближения (итерации) перестанут давать сколько-нибудь существенные изменения в значениях Ф.

Рис.3.2. Контрольный объём (заштрихованная область), для двумерного случая и обозначения для алгоритма в декартовой сетке

Одним из важных свойств

МКО является то, что в нем заложено точное интегральное сохранение таких величин, как масса, количество движения и энергия на любой группе контрольных объемов, следовательно, и на всей расчетной области. Это свойство проявляется при любом числе узловых точек. Таким образом, даже решение на грубой сетке удовлетворяет точным интегральным балансам.

Ansys CFX позволяет проводить расчеты на смешанных сетках, состоящих из различных типов элементов: тетраэдров, призм, клиновидных элементов и гексаэдров (рис.3.3).

Рисунок 3.3. Ячейки а) – гекса, б) – тетра, в) – призма, г) - пирамида

При расчете стационарных вариантов процесс итерации по времени завершается при достижении требуемого уровня сходимости, определенного пользователем. Для расчета переходного режима итерационная процедура обновляет нелинейные коэффициенты на каждом временном шаге (цикл для коэффициентов), в то время как внешний цикл приближается к решению по времени. [12,16] Для наглядности, схема описанного алгоритма изображена на рис.3.4.

 

критерий схождения

максимальное время

критерий схожднеия/ Максимальное число итераций

продвижение по времни

Временной?

вычисление перемещения масс

вычисление турбулентности

вычисление энергий

Рисунок 3.4. Схема алгоритма

Выводы

В этой части предложена схема построения численного решения задач газовой динамики, рассмотрены некоторые математические аспекты данной проблемы. Кроме того, был сформулирован метод контрольного объема, как один из самых эффективных и удобных методов численного моделирования. Прозрачная физическая интерпретация метода сделала его одним из самых востребованных при создании компьютерных пакетов по вычислительной газовой динамике. Следующим шагом должно стать построение стратегии компьютерного моделирования в П.П.П. и проведение численного эксперимента.

Для проведения численного эксперимента был выбран наиболее оптимальный программный прикладной пакет – Ansys CFX, основанный на методе контрольного объема.

4. РАСЧЕТ ДИНАМИКИ ВЫХОДА РАЕТЫ ИЗ ШАХТНОЙ ПУСКОВОЙ УСТАНОВКИ (ЧИСЛЕННЫЙ ЭКСПЕРИМЕНТ)

4.1 Постановка задачи

На основе исходных данных и расчетах, проведенных в разделе 2, разработать стратегию численного эксперимента газодинамической задачи выхода ракеты из шахты. На основе проведенной работы сделать выводы.

4.2 Стратегия постановки численного эксперимета

Газодинамическая задача является временной, поэтому решение ее будет проводиться в зависимости от времени. Для этого необходимо построить несколько моделей, в которых будет меняться объем «подракетного» пространства, в зависимости от движения ракеты. При достижении давления, которое обеспечивает движение ракеты на величину H (величина Н выбирается из условия точности расчета), решается новая модель, начальные условия в которой соответствуют параметрам в последний момент предыдущего расчета. При таком подходе определяются только параметры газа, а движение ракеты определяется из уравнения

и .

· Построение твердотельной модели

Как уже было сказано, модель можно построить в любом графическом редакторе, в том числе KOMPAS, Solid Works, Unigraphics, ProEngineer. В данном случае выбран пакет Solid Works, в котором была создана модель и расчетная область. Так как модель симметрична, то можно ограничиться построением сектора (рис.4.1).

Конечным результатом построения должны стать сохраненные файлы формата Parasolid (текстовые).

Рисунок 4.1. Схемы твердотельных моделей (нижняя часть)

· Построение сетки

Одним из самых сложных этапов моделирования, является построение сетки расчетной области. Качество сетки влияет на сходимость решаемой задачи и самое главное, на правдивость полученных результатов. Необходимо помнить, что сетка должна иметь больших различий по соотношениям объемов ячеек. При уменьшении объема ячеек – увеличивается точность, но при этом и увеличивается время расчета. Но, зная, что наиболее важной характеристикой точности является величина ячеек на границе с телом, то объем ячеек сетки будем уменьшать от краев расчетной области к границам рассматриваемого тела.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Военное дело и гражданская оборона»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы