Датчики управления двигателем автомобиля
На рис. 16а–г проиллюстрирована работа рефлективного оптического датчика, который функционирует аналогично, но конструктивно отличается тем, что фототранзистор в рефлективном датчике переключается светом, отраженным от детектируемой поверхности.
Светодиод и фототранзистор рефлективного датчика расположены с одной стороны поверхности детектируемого объекта. Рефлективные датчики обеспечивают
большую гибкость монтажа, но характеризуются фокусным расстоянием (оптимальным расстоянием от датчика до детектируемого объекта), на котором он должен быть помещен (обычно в пределах 2,54–12,7 мм) и относительно которого варьируется рабочий диапазон устройства.
При конструировании рефлективного датчика важнейшим требованием к детектируемой поверхности является ее отражательная способность и качество отражения. Например, для задач детектирования скорости цвет вала двигателя и ротора выбирается черный (рис. 16г), тогда полосы отражающего материала на валу обеспечивают периодическое переключение датчика.
Луч, отраженный от стандартной поверхности, не сфокусирован и представляет собой усеченный конус с основанием на рефлективной поверхности, образованным отражаемым коническим световым пучком светодиода, что не позволяет с высокой точностью обнаруживать малые отражающие объекты, и ограничивает пространственное разрешение датчика. Для того чтобы уменьшить диаметр отражаемого луча, в качестве источников света применяются лазерные светодиоды, а для фокусировки луча на его пути от светодиода к фотодетектору в датчик встраиваются линзы.
Производным от рефлективного типа датчиков является волоконно-оптический датчик перемещения, содержащий две группы волоконной оптики: передающие волокна, подключенные к источнику света, и принимающие сигнал волокна, которые подсоединены к фотодетектору (фотодиоду) и объединены в одном корпусе. Свет от источника передается через оптоволокна на поверхность цели и отражается обратно, часть отраженного света улавливается принимающими оптоволокнами и попадает на фотодетектор, регистрирующий интенсивность отражения, которая представляет собой нелинейную функцию свойств поверхности и расстояния до цели. Этот тип датчиков может потребовать периодической калибровки.
Рефлективные датчики используются во многих сферах — в промышленности или компьютерах (датчики для компьютерных мышей). В автоэлектронике данный тип устройств применяется достаточно широко — например, для контроля положения пассажира, в датчиках дождя и в энкодерах, а кроме того, становится базовой схемой, интересной для преобразования измерительных концепций по отношению к другим типам датчиков.
Особенности схемотехники оптических устройств
Оптический датчик — это устройство, измеряющее интенсивность электромагнитных волн в диапазоне от ультрафиолетового до близкого к инфракрасному.
Свет представляет собой пучок дискретных фотонов, каждый из них является носителем кванта энергии, зависящей от источника света.
При взаимодействии с атомами кремния фотоны, в зависимости от длины волны (что эквивалентно количеству энергии), увеличивают проводимость фотодиода. В нем при смещении генерируется электрический ток, и его можно измерить.
С физической точки зрения базовое измерительное устройство — это именно фотодиод, который при объединении с функциональной электроникой будет представлять собой пиксель (pixel — PIcture ELement).
Другой базовый тип фотодетектора — фототранзистор, под действием света он функционирует аналогично, но обеспечивает переключаемый логический выход.
Фотодиоды и фототранзисторы закладываются в линейные оптические массивы, CMOS-камеры.
Промышленностью (Optek, Vishay и др.) выпускаются также готовые щелевые и рефлективные датчики. Стоимость обоих типов менее $1, причем щелевые датчики дешевле. Могут использоваться и дискретные оптические эмиттеры/ресиверы — светодиоды и фоточувствительные элементы — фототранзисторы, фотодиоды, а также фототиристоры.
Щелевые и рефлективные датчики (а также оптоизоляторы1) функционируют одинаково с идентичными характеристиками, важнейшей из которых является коэффициент передачи тока.
Поскольку фототранзистор, при воздействии светового луча переходящий в состояние насыщения, обеспечивает готовый цифровой выход, в большинстве коммерчески доступных оптопрерывателей и рефлективных датчиков используется именно данный тип фотоэлектрического преобразователя. Для включения датчика во внешнюю цифровую схему потребуется только токоограничивающий резистор в цепи светодиода и внешний резистор между плюсом питания и выходом транзисторного ключа (рис. 17а).
Рис. 17. Типичные принципиальные электрические схемы для включения оптопрерывателя и рефлектора а— схема на основе фототранзистора с цифровым выходом; б— схема на основе фотодиода с аналоговым импульсным выходом; в— схема на основе фотодиода с цифровым импульсным выходом; VD1 — светодиод; VD2 — фотодиод; VT1 — фототранзистор, R1, R2 — токоограничивающие резисторы.
Пара «светодиод–фототранзистор» характеризуется усилением менее 1. Сумма выходного тока коллектора фототранзистора, отнесенная к величине входного тока светодиода, называется коэффициентом передачи тока (КПТ, или CTR — Current transmission ratio). Типичный ток светодиода 10–20 мА с типичным CTR щелевого переключателя порядка 0,1 соответствует 1–2 мА выходного тока коллектора.
КПТ зависит от характеристик светодиода и фототранзистора и различен для оптических датчиков в широких пределах, поэтому значение резистора R2 должно гарантировать насыщение фототранзистора и стекание тока, достаточного для получения действительных амплитуд логических уровней при подключении оптического датчика к микроконтроллеру. Например, при токе светодиода 10мА и КПТ=0,1 значение резистора R2 должно быть выбрано приближенно равным 5 кОм. (Меньшее значение допустимо для оптического переключателя с высоким КПТ или с большим током светодиода и будет обеспечивать лучшую шумовую устойчивость (меньший импеданс) и более высокую скорость переключения.)
Скорость переключения фототранзистора в любом оптическом датчике довольно медленная, что ограничивает максимальную детектируемую скорость устройства и должно учитываться программой, считывающей выход датчика. Типичные значения времени включения (перехода в состояние насыщения) — 8 мс, времени выключения — 50 мс.
Рефлективные датчики также характеризуются КПТ, который в отличие от оптопрерывателей не постоянен и зависит от силы отраженного света, типа поверхности и расстояния от поверхности до датчика. КПТ рефлективного датчика специфицируется производителем со стандартной белой рефлективной поверхностью, помещенной на фокусном расстоянии от датчика. В реальном проекте вычисляется или измеряется фактический КПТ.
Поскольку КПТ рефлективного оптического датчика варьируется в широком диапазоне, аналоговый выход (рис. 17б) может быть более предпочтительным, поскольку пользователю предоставляется возможность самостоятельно подсоединять выход датчика к АЦП и программно отслеживать изменения в выходном уровне сигнала, что, как показано далее, полезно и для интерполяции сигналов инкрементальных энкодеров, но в этом случае необходимо больше времени для выборки АЦП.
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск