Датчики управления двигателем автомобиля

Актуальность магнитостриктивных датчиков положения в автоэлектронике во многом обусловлена (или определена) их физической природой и конструктивными и функциональными особенностями, являющимися следствием базового измерительного принципа.

Поскольку магнитостриктивные преобразователи относятся к типу устройств, работающих по принципу измерения времени распространения волны от цели до датчика

и обратно, цель не отличается значительной длиной и ценой. Принцип измерения времени распространения отраженной волны позволяет получить абсолютный тип датчиков положения, который, в отличие от инкрементальных оптических и магнитных энкодеров, характеризуется устойчивостью к шумам и не требует индексной отметки и/или программы подключения или обучения.

В противоположность ультразвуковым радарам, измеряющим время распространения ультразвуковой волны в воздухе, магнитостриктивные преобразователи используют ферромагнитный стержневой волновод, обеспечивая таким образом ход цели по определенной траектории, экранирование, увеличение скорости распространения, высокую линейность и точность измерения расстояния от датчика до цели, пропорционального длине волновода. Кроме того, минимизируются потери энергии, амплитуды и точности вследствие рассеяния волны на соседние объекты. С помощью магнитостриктивных датчиков можно получить практически бесконечное разрешение, ограниченное только цифровой обрабатывающей электроникой и шумами.

Выходной сигнал после обработки ASIC может быть как аналоговым, ШИМ, так и еще более простым — в виде двух цифровых импульсов старт–стоп, время между которыми для идентификации положения измеряет микроконтроллер. Включение Smart-ASIC в сенсорный блок датчика позволяет программировать измерительный диапазон, детектировать дополнительные параметры движения (механическое нулевое положение, смещение, чувствительность) и формировать любой энкодерный интерфейс. Магнитные и ферромагнитные сенсорные компоненты нечувствительны к влажности и загрязнениям, типичным для автомобильных окружающих условий. Временные допуски (старение) практически не оказывают влияния на измерительную точность датчика. Датчики на основе ферромагнитных материалов практически не нуждаются в повторной и периодической калибровке. Температурные допуски вследствие расширения металла могут быть скомпенсированы, например, за счет встраивания в сенсорный блок или ASIC интегрированного датчика температуры.

Рис. 25. Некоторые уникальные идеи по применению датчиков MTS Temposonics: а— идеи по применению датчиков положения MTS в коробке передач; б— датчик серии C с гибким валом для криволинейных измерений; в— датчик серии C с поплавком для детектирования уровней жидкости

Рис. 26. Магнитостриктивный датчик положения клапана и/или ротора клапана двигателя внутреннего сгорания Ford Global Technologies: 1 — статор клапанной сборки; 2 — ротор; 3 — клапан; 4, 5 — подшипники; 6 — защитное ограждение; 7 — центрирующая пружина; 8 — вращающийся постоянный магнит для индикации углового положения ротора; 9 — магнитостриктивный датчик аксиального положения клапана 2 и/или углового положения ротора 1 электромеханической клапанной сборки; 10 — стек многослойного листового металла статора; 11 — центральное отверстие статора; 12 — обмотки статора; 13 — кольцевой магнит ротора; 14 — шаровая гайка; 15, 16 — сегменты магнита; 17 — цилиндрическая часть тела шаровой гайки; 18 — центральное отверстие шаровой гайки; 19, 20 — плечи для опоры; 21 — спиральная канавка цилиндрического тела; 22 — плоские участки — разделители спиральной канавки; 23 — возвратный канал для кольцевой прокатки примыкающих шаровых подшипников 24; 25 — апертура в головной части двигателя для установки клапанного штока; 26 — седло клапана; 27 — клапанный шток; 28 — антискручивающий волновод; 29 — спиральная канавка клапанного штока; 30 — плоские участки — разделители спиральной канавки клапанного штока; 31 — верхнее опорное плечо; 32 — отверстие для клапанного штока; E — ось вращения ротора (по часовой стрелке или против часовой стрелки); 33 — звуковой канал радиусом R; G — зазор в звуковом канале; θM — детектируемое угловое положение; L — соответствующая длина пути; UOSC, UTEMP, UTR, UR — сигналы напряжения; P1, P2 — точки схемы (с нулевой длиной проводника); Z — детектируемое аксиальное положение

Магнитоупругие датчики крутящего момента

Точное измерение крутящего момента — одна из важнейших задач в автомобильной электронике. Сферы применения включают контроль крутящего момента выходного вала двигателя, входного и выходного валов автоматической коробки передач, типичные задачи рулевого управления (рис. 91).

Рис. 27. Примеры применения магнитостриктивных датчиков крутящего момента в автоэлектронике: а–ж— магнитоупругие датчики крутящего момента Magnetoelastic Devices: а— классический вариант датчика: 1— датчик крутящего момента; 2— магнитоупругий преобразователь; 3— датчик магнитного поля (датчик Холла); 4— вал, соединяемый с детектируемым объектом; A— ось вращения; M— крутящий момент; Hост — круговое тангенциальное направление остаточного намагничивания; 5— проводные выводы датчика; б— выходная характеристика датчика Холла; в— спиральное намагничивание магнитоупругого кольца; г— версия с поляризованным магнитоупругим кольцом с двумя противоположно намагничиваемыми областями: 1— конструкция датчика; 2, 3— два противоположно поляризованных кольца; 4, 5— один или два датчика магнитного поля; 6— вал; 7— непрерывная поверхность материала колец; Mr1(+), Mr2(–) — остаточная намагниченность колец; д— версия с зубчатым кольцом, модулирующим магнитное поле для измерения скорости вращения: 6— модулирующее кольцо; е— типичный внешний вид сенсорного модуля датчика, установленного на валу; ж— применение датчика MDI для детектирования крутящего момента вала коробки передач; з— магнитостриктивный датчик крутящего момента в системе рулевого управления Suzuki: 1— цилиндрическое прямозубое колесо; 2— шестерня; 3— выходной рулевой вал, управляемый двигателем; 4, 5— подшипники; 6— рулевая колонка; 7— датчик крутящего момента; 8— вал датчика; 9— рулевой вал; 10 — соединительная часть рулевого вала с валом датчика; 11 — двигатель; 12 — соединительная часть вала рулевого управления; 13 — корпус датчика; 14, 15 — шпоночные соединения; 16 — кабельный соединитель датчика 7; 17 — люк рулевой колонки для вывода соединителя; 18 — пространство для установки датчика; и— магнитостриктивный датчик крутящего момента Aisin Seiki: 1— магнитостриктивное устройство; 2— группа обмоток; 3, 4— подшипники; 5— корпус; 6— печатная плата; 7— вал; 8, 9— участки с магнитной анизотропией; 10 — бобина; 11, 12 — возбуждающие обмотки; 13, 14 — детектирующие обмотки; 15, 16 — проводные выводы; 17 — терминалы печатной платы; к, л— магнитоупругий датчик крутящего момента Siemens VDO с низким гистерезисом, производимый методом термического распыления: к— конструкция датчика: 1— магнитоупругий элемент; 2— немагнитный вал; A— продольная ось вращения; л— внешний вид; м, н— магнитостриктивный датчик крутящего момента для автоматической коробки передач: 1— входной вал коробки передач; 2— магнитостриктивный датчик; 3— статор; 4— цилиндрическая часть статора для установки датчика; 5— гильза, удерживающая датчик крутящего момента в статоре; 6— канавка для проводных выводов датчика; 7— цилиндрический полый корпус датчика; 8, 9 — части корпуса для вывода и прохода проводов; 10, 11, 12 — детектирующие обмотки; 13 — сегментированный магнитостриктивный материал; 14, 15 — шарикоподшипники; 16 — проводные выводы; о— устройство электрического рулевого управления с механизмом детектирования крутящего момента Honda: 1— вращающийся вал, соединяемый с рулевым колесом; 2, 3, 4— нижняя, верхняя, средняя части вала, соответственно; 5, 6— магнитостриктивные мембраны; 7— механизм шестерен; 8— ведущая шестерня; 9— зубчатая рейка; 10 — вал рейки; 11 — первый подшипник; 12 — второй подшипник; 13, 15 — схемы возбуждения переменным напряжением магнитостриктивных мембран; 14, 16 — схемы детектирования; 17 — двигатель; 18 — ведущий вал; 19 — механизм редуктора; 20 — ведущий червяк; 21 — червячное колесо; 22 — корпус; 23, 24 — верхняя и нижняя части корпуса устройcтва, соответственно

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы